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PREFACE

become mathematical as opposced to merely nmumerieal and

this almost abrupt change in methods has resulted in dis-
tinet instructional needs. DBy mathematical is meant the use of >
a small number of indexcs which express the statistical informa-
tion ecntained in the data in concise, accurate, and stand&rayed
language. In this way it is possible to replace the mass Jof data
by & few derived measures. 3

Mathematical statistics has been develope(l {rbm the older
mathematical theory of probability. The dewelopments of the
past thirty years and especially the past tergyea,rs have resulted
in a science which has grown away fron‘{ ~11;s origin until it has
become an almost separate branch of\mathematical theory.

"The development of m@hgm@ﬁe@hwy&hﬂs been largely
in the hands of persons of thordugh mathematieal training, al-
though in a number of outstfmf:hnu instances these rescarch work-
ers have possessed a highly déveloped sense of practical valnes.

Mathematical methods' in statisties have. proven so useful
that literally hundreds.of research workers are making wide nuse
of them. Ouly as percentage of the persons using modern
statistieal methods ‘have had the mathematical {raining necessary
to followin ’the logical steps connecting present day methods
with the hass  theory of probability, or to following many of the
proofs.\(md derivations of the formulas which they frequently
use., .’I‘hls situation is not of itself fo be deplored for a compar-

a,ble situation is found in other branches of science.

\ DX Though the practical worker in statisties need not of neces-
sity be thoroughly familiar with the mathematical theory, he
must understand the basie meaning of the methods and indexes
which he is using. Fortunately the basie ideas which have proven
of value here are not diffienlt to understand and do not of them-
selves involve higher mathematics. That is to say, the mathe-
maties is only a tool applied to the basie concepts.

(3)

. STATISTICS is among the very latest of the sciences to



1t is the primary purpose of this book to present some of the
more important and more commonly used statistical indexes, and
to show something of how the mathematics has been applied in
the development of these indexes. Stress is laid at all poinis on
the Teader’s obtaining a careful and accurate knowledge of the
purpose of each index and especially of the reliance which can
be placed upon each index and on each part of the method.

The student whose interest is primarily mathematical magy,
it ig hoped, find the descriptions here presented of direct aasist-
ance toward his obtaining a full idea of the practieal meamnﬂ' nof
the formulas. O

For the student who looks upon mathematics as_ SOmethmrr to
be used only where necessary this hook is 1n1;ende({to present the
basie ideas of modern statistical methods in sfich a way that a
lack of extensive mathematical training may* not prevent the
obtaining of a comprehensive idea of t% Significance of statis-
tical indexes.

CARL J. WEST.
January, lgiﬂww.dbraulibt‘ary.ot'g.lyr
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PREFACE TO TEE FIRST EDITION

T IS the aim of this book 1o present cerfain topies of elemen-
I tary statistical theory which have been found useful and

workable, There is no real reason why the theory of statis-
tical methods should remain in obscurity. The necessary mathe- -
matics is largely elementary arithmetie and except in a few cades®
there is 10 need for higher mathematies. This book presupboses
& reasonable familiarify with elementary mathematics enly.

The idea is emphasized that a formula or met‘hod"to be of
practical and trustworthy value to a statisticign must be so
simple and direct that the final results can hé,interpreted in
terms of the original conditions or the given\data. To illustrate,
if the arithmetic mean is ten percent largerin one distribution
than in another what difference does fr;l{'is variation indicate in
the forms of the distributions orhin’the values of the two
series of measurements? If,opeygobrs Og%t}g is 0.54 and s
second (.59 how much more elogely related are the attributes in
the second than in the first?, I must always be remembered that
mathematics is but a tool #0"be used when the desired results can
be more efficiently attdimed by its use, and that a formula js
nothing more than Q“.s’tatement in mathematical language of a
method of comp,uﬁtlon already thought out and understood.
The difficuliiegythat may arise in this subject are not primarily
mathematical’y “They are essentially a part of the often difficult
task of a:{ai};éing a statistical distribution.

\.S" y % * * * *

SProfessor James MceMahon has given most generously of his

.«’gﬁiﬁle' and intercst. Whatever sssistance this book may afford to
N the practical worker in statistics is in a large measure due fo the
influenee of Professor Walter F. Willeox, whose critical insight
into the limitations and the possibilities of statistical methods
together with the originality and practical initiative which per-
meate his research and instructional work place all his students
under obligation te him.

CARL J. WEST.
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CHAPTER 1
CURVE PLOTTING

Plotting the Data. Let us plot the following data of
monthly average precipitation in inches at Columbus.

January 3.1 May 3.8 September EX
February 2.7 June 2.3 Cetober 2.5 N
March 3.5 July 3.6 November 28
April 2.9 Augusé 3.3 | Decomber ..\’M\

A horizontal straight line is first drawn and at’c,fl‘l;{’ll dis-
tances on this line fwelve points are located, one for gdeh’ month.
On a vertical line erected at the point corrcspﬂfﬂaing to the
month of January equal intervals are laid off, ahé for each inch
of precipitation, and these intervals are sp}gﬁh’ﬁided into tentha.
The two serios of points are calied the~seales. It is usual to
designate the horizontal and the vertical'stale lines by O—X and
0—Y respectively, as in Figyre 1. X

ww.cjbi"éulibral'y.org_in
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Figure 1. Monthly Average Precipitation at Columbus,

(11)



12 INTRODUCTION TC MATHEMATICAL STATISTICS

To save space the line 0—X in Fig. 1 is taken at 2 inches in-
stead of zero inches. The January precipitation is 3.1 inches.
Place a dot above January, or beginning point, at a height cor-
responding to 3.1 inches on the vertical scale. The next point is
directly above the second or February point at a distace cor-
responding to 2.7 inches. Continuing in this way a poin’E\is
located for each month. The data is then said to be plélted or
pictured point by point. O

o N/
\
7%
\ 3

Exercises

1. Plot the following data of average month]y\emperatures in de-
grees from 1878 to 1939 at Columbus.

Month Temperature Mon'th Temperature
January 29.7 ity 75.2
February 30.8 > August 73.0
Marf:h www.d brauﬁﬂ'toary .qv g. in September 67.0
April 5.0 X% October 55.0
May 82.1%% November 422
June 309 December 32.6

A\ N
2. Plot ths lif 'éxﬁectaney from the Ameriean Experience Table of
Mortality by five year ages:

Age \ PExp. Age Exp. Age Ezp.
10 \ 49 40 28 70 8
15 \‘. 46 45 25 75 6
2@ 42 50 21 80 4
. ;.,?5 39 55 17 85 3
30 35 60 14 20 1
<‘; ¥ 35 82 65 1
3. Plot the following population data for the United Statos:
Foar Population  Year Population  Year Population
1790 3920214 1840 17,069,453 1890 62,947,714
1800 5308488 1850 23,191,876 1800 75,994,575
1810 7,239,881 1860 31,443,321 1910 = 91,972,266
1820 9,638,453 1870 38,558,371 1920 105,710,620

1830 12,866,020 1880 50,155 783 1930 122,775,046
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4, Plot the following deaths per thousand from the American Experi-
ence Table of Mortality by five year sges:

Age Death Age Death
10 75 45 11.2
15 7.6 50 13.8
20 7.8 55 186
o5 8.1 80 926.7 ~
30 8.4 65 40.1
35 8.9 70 620 O
40 0.8 75 04,4

Laying Off the Scales. The object of any graphic repre-
sentation of statistical data is to present a vivid »p@tﬂre. There--
fore a diagram too small or too large, or too Wwitle' or too narrow
will not be az effective as will a eorrectly perortioned diagram,
This means that the widths of the horizéntal and the vertical
scale intervals must be carefully chosep(n order to give the com-
plete diagram the proper proportionsi.

In determining the widthswfdheaidiiernglshespunt must be
taken of the nature of the statisfital material. If the data is of
such a nature, for instance, that the measurements can be deter-
mined only to the nearestzdollar it would be manifestly improper
to divide the scale int¢ jnhtervals corresponding to cents. The
wealth of the countrand the value of mannfactured articles are
examples of statisfics which do not admit of close subdivision.

It is useless 6 have the scale intervals finer than the small-
est differenags which the eyc ean conveniently distinguish on the
diagrams (This often means, even in the case of quite aceurate
material, that the data must be used in round numbers. In plot--
ting\fpﬁpulation data for the United States, for instance, one
tillion may be the smallest numerical difference that can be pie-
\fured on a diagram of ordinary size.

Horizontal and vertical lines called coordinate lines ordinar-
tly are drawn to assist in earrving the divisions of the scales
across the diagram.

Connecting the Points. The eye is aided in paseing across
a diagram if the plotted points are connected by a curve. The
curve may be either a series of broken straight lines joining the
points or a eontinuous curve passing through each point without
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sharp angles or abrupi changes in direction. OF the two methods
the continuous eurve is usually to be preferred becaunse of the
better appearance which it presents.

The general term, curve, it must be noted, refers to the con-
nection of the points and not to any special geomctrieal shape.
A straight line, a series of straight lines, are sfaiistical curves
just as much as a connection no part of which is straight.

The items measured, observed, or plotted may be reférréd
to as measurements, observed values, variates, frequencies; sovcli-
vidual deviations, efc., depending on the conneetiog»ﬁr nature
or source of the data. ?

N\

2§, 4
Exercises "‘\

5. Connect the points in Exercises 1, 2, 3 al\d & by straight loes to
obtain the curves. AN

6. Connect the points in Exercises 1, 2,/8.and 4 by curved lines pass-
ing through each point and rounded at thezppiﬁts to absorb the change of
direction and compare with results obtained inder Exercise 5.

7. UndedBRGEREW HORHDGSBAEE that deaths per thousand heyond
age 75 are omitted, These items are,as follows:

S g

Age Deaths
804 144.5
85 235.6
\\ 80 454.5
X 95 1060,

Re-plot Exgrcise 4 using these added values. In doing this mote that
the seals must, beehanged in order to got ali of the data on one curve, or
else it mxﬁe?better to plot the curve in two sections. If plotted in two
sections it may be convenient to show only a part of the ordinates in the
saconﬁgs'&tion where the ordinates are so much greater than for the first

section If this latter is done some motation should be plaeced on the dia-
g'faﬁl to show that the seale is broken.

General Directions. Many rules can be laid down %o cover
the method of presenting statistical data in a diagram, ~ Such
rules are ordinarily framed with reference to the uses to be made
of the diagram. Since it is the purpose of this book to describe
methods of analyzing statistical dats only such brief instruetions
as to form are here given as may be necessary in view of the pur-
pose of this book, '

All rules are, in fact, only details under the general rule—
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& diagram must be so arranged as to present the data mosi
effectively.

Regardless of the use to be made of it every diagram must
be provided with a brief, concise, and yet accurate and compre-
hensive title. A careful study of the tities in any of the better
known statistical reports will be especiaily helpful in acquiring
a notion of what constitutes an adequate fitle. In partieunlarn
reference may be made to the titles in the year books of tie
various departments of the government at Washington, ﬂn,d\t}i'r«
varions scientific and technical journals. A

A}l headings of columns must be clear and dcﬁllité and all
units of measurement of the scales must always belgiven, thus,
“‘Preeipitation in inches,”” ** Temperature in degveps.’’

. . =ﬁ\\”

Exercises A

In each of the following excreises construgiha E:omplete statistical dia-
ram wit; B i i i
Eac}]‘ with the enrve earefully dl‘ﬂW\I"l\( ‘%1\1'\9 C{aﬁ%})ﬁﬁg;};t&giﬁa designed for
. 8. The land arca of the Unitq&.’Sﬁtes exclusive of ovtlying pos-
seesions for each eensus year from Repotts of the United States Censns,
9. The population aof Ohio,4Nseach censms year from Reports of the
Census, 2\Y
10. The aceumulated vaﬂjm’of $1 at 109 compound interest:
End of Year 1 ] \1 4 5 6 7 8 9 10
Amount $1,10 $}-2}L $1.33 $1.46 $1.61 $1.77 $1.05 $2.14 $2.36 $2.59
160 -11. The average yield per acre for wheat in the United States since
05 Yearhook, Dapartment of Agriculture.
. 12, Average ‘Farm price per bushel of wheat in the United Stiates
sinea 1900; Y%u‘book, Department of Agricaliura.
13. Substitute the word corn for wheat in exercises 11 and 12 and
construet the curves,

M\M"re than One Curve on the Same Diagram. The relation-
Sp among iwo or more sets of data can frequently be studied
conveniently by plotting the different sets all on one diagram.

Ezxerciges

14. Compare the rainfall curve with the temperature surve. To what
oxtent do the twe curves vary in the same direetions? What conclusions
can be drawn as to the tendeney for the mmount of rainfall to depend on
the temperatnre?
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15. Give a comparative interpretation of the eurves of Exercises 11
and 12, Why should they not be expected to follow exactly the same
geneyal course?

18. Diseuss, a8 in Exereise 15, curves of prices and yield per acre
of eorn,

Cumulative Curves. In the foregoing curves, values haye
been stated for each unit of the horizomtal scale. It is frequently
desirable to construet what is called a cumulative curve SWhere
the curve at any point is the cumulative sum of oll the preveding
wnits, Thus, if a curve be plotted to show the gajnjor loss in

_ business month by month, it may also be desiredste>construct a

curve showing gains or losses month by monthfsiﬁce the begin-
ning of the year, This latter curve would be\g\umulative curve.
>
Exercises, ~\

17. Plot a cumulative eurve of the id:ath of monthly average precipi-
tation. w.dbraglibrary . or BTAN
18, Plol s cumlative cuive b {he data of Exzercise 1.
18. Plot 2 cumylative curye, of the data of Fxercise 10,
20. What additional infotmation is given by each of the eurves in
Exereises 17, 18, 19, over that given by the enrves of Figure 1 and Exercises
1 and 101 o)

L 3

Coordinatesy, \I}is eonvenient to have a standardized nota-
tion for the herizontal and vertical scales. The horizontal base
line is denote@\by O0—X and called the azis of abscissas or simply
the X-agid)The vertical line is denoted by O—Y and called the
azis ofsordinates or the Y-umis. The point where the two lines
meei;.}s the origin of coordinates. Distances along the X-axis are

_spoken of as « distances or x coordinafes, and those along the

Y-axis as y distances, or y coordingtes.

Logarithmic Curves, Where it is desired to picture relative
changes or values, use is sometimes made of logarithmie curves.
A logarithmic curve is obtained by taking the logarithms of the
megsurementis and using these logarithms as vertical distances or
ordinates. Since in multiplication logarithms are added, a con-
stant ratio or rate will appear in the logarithmic diagram as a
congtant addition. Hence if there is a constant rate of change
in the data the logarithmic curve will be a straight line, Whether
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the rate is constant or not, curves of this type are often of value
for comparing different rates. However, if the rate of change is
not approximately constant considerable familiarity with logar-
ithms ig necessary in interpreting the curve.

Exercises N
21. Plot the curve of the following data, and then on the same dg{
gram plot the logarithmie curve. \
N\

w y log 4 \ >

1 1 0 N

g 2 30 &0

3 4 80 NN

4 8 90 \\i\

5 .16 1‘2?.\\,

6 32 1. 18/

22, Plot u logarithmie curve of the dafi m‘;' Exercise 1(.

23, Plot a logarithmic eurve of the &atﬁ' of Exercise 3.

24, Interpret the comparatwem.&mtﬂhmlﬂﬁ e engyasm in Exercises
10, 19, and 22,

e
\
o~
&\
©
A\
LD
P Mk
A
{L?
N/
::\
\NY
£ )
o
“l
s,'::‘
O



CHAPTER 1I
SMOOTHING A CURVE

Interpolation. The curves of the preceding Chapter were
drawn for the purpose of connecting the plotted points as an aid
to the eye in following the course of the data across the di\a\oram
However, a statistieal eurve can be used for other purp\oses than
picturing the data.

The population of the United Siates is gwen‘by sthe Bureau
of the Census for ten-year intervals. What has been the popu-
lation from year to year? This question d3vessentially onc of
enterpolation, that is, of estimaling mlu&s {ying between staled
or known volues, V-

A simple method of obtaining’ intermediate values from a
curve consists of measuring on the vertical scale the height of the
eurve at the.vequired. ioiarty bﬂglws with the Population Curve
of Exercise 3, Chapter I, ,w}ueh is constructed from decennial
cengus reports, an estimafé ol the population for the year 1926 is

given by the he1ght o\f the curve above the 1926 point on the
honzogta.l geale, \\

N

Exercises

L Fat!mate the population of the United States from the eurve of
Exercise ?v\Chapter I, for each of the years 1920-1930.

- 2oPFrom Ezercise 2 of Chapter I estimate the life expectancy at the
agea\ , 48, 57.

3. TProm Exercise 4 of Chapter T estimate the deaths per thougand

) '%ﬁ the ages 28, 46, 57,

4. Appraise {he acenracy of the interpolations in Exereizes 2 and 3

" at the younger agas as compared with the older.

5. Eetimate the eompound amount of $1 at 7% years at 109, from
the data of Exercise 10, Chapter I.

Under the foregoing method of interpolation an estimated
value depends largely on the two consecutive given values which
inclose it. But the increase in population during a decade may
have oceurred almost entirely during the latter years of the

(18)
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period so that the shape of the curve when drawn merely to con-
nect the ten-year points may not adequately indicate this peeu-
liarity of inecrease. Again the temperature for one month may
have no eonneclion with that of the preceding month and hence
the curve between the points, depending as it does on the two
non-related valucs can hardly be expected to give the actnal tem- ,
perature for an intermediate week or day.

It must be apparcnt therefore that a curve which paSseh
through a series of more or less non-related points can nof e of
great value in interpolation and that the preblem of mterpo.!a»
tian 13 essentially one of determining by some meang mf other the
general course of the daia and then estimating th"é\ntermedmte
values tn conformity with this general lrend: The values ob-
tained in this way arc the most probables Qlues Accidental
variations which bear no relation to t‘qe ﬁndeﬂ) ing tendencies
ean not be so estimated. §

The Smoothing of a Cﬁ‘i‘%db"f‘ﬂk'bbﬁ‘ié&é’é 8dP Chapter T,
drawn as they are through each pomt preserve all the variations
whether they reflect an underlying trend in the data or whether
they are due merely to the\presence of accidents] influences, The
eurve of Mean Monthly Temperatures, Exercise 1. of the preced-
ing Chapter, showsdistihet seasonal variations in temperature— '
higher temperaturesin summer and lower in winter, Along with
these essentially™significant changes are fluctuations apparently
accidental as\"}l"one year June is warm and in another relatively
cool; somptimes January is warmer than Fehruary and some-
times the reverse is troe.

A curve to represent a general movement or trend must be
«\ﬂzhout abrupt changes in direction and must gweep among the
points rather than necessarily through each point. Since such
8 smoothed curve, as it i3 ealled, depends on the general or eol-
lective eharacteristics of the data the drawing of it must be based
on collective characteristics of the measurements. One important
general assumption has just been stated; namely, that the eurve
must ordinarily be smooth, that is, not have abrupt changes in
dirvection. This assumption is another way of saying that the
significant variations are fairly uniform from value to value and
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not capricions or arbitrary. A second assumption, which ig
presently discussed, is that arcas under a curve arce relatively
stable and change in accordance with the underlying trend.

Smoothing by Inspection. The smoothing of a curve may
be based on a study of the data and made a matter of the skill
and experience of the statistician without the assistancd wf
definitely stated methods or rules, The curve is then said, t6 be
smoothed by tnspection. 2N N

Ir smoothing a curve the first step is to study thedata care-
fully. Witheut such an investigation into the pfebable sources
and extent of the irregularities and fluctuationd énc cannot hope
to know what irregularities to smooth out-and’what to leave in,
On the basis of the information gained by this study a prelimi-
nary curve should then he drawn fr chand among the poinis.
By successive erasures and re-drawings the finished curve can
gradually be arrived at, Thus’a’elirve showing the long time
movements i’ ’ﬂﬁé“fﬁ‘[@&@f’ﬂ&f&éﬂl pass above some points and
below others and how much}thé" eurve should miss any point can
not well be determined “without some knowledge of financial
-eonditions, yields, ete.

The inspection éthod of smoothing a curve is often suffic-
iently accurate;, especially when done by a statistician of ex-
perience and when there is a considerable element of inaccuracy
in the datal" \Tts disadvantage lies obviously in the fact that no
two s1pQtl "hgs of the same ecurve will be exactly alike. The
inspez"\tieﬁ method is essentially tentative and personal.

«\I any event, a rough preliminary draft of the curve should
" be“made by inspection before broceeding to apply more refined
\ ymethods.
Exercises

6. Bmooth the eurve of monthly average precipitation in Figure 1,
Chapter T,

7. Bmooth the temperature curve in Exereise 1, Chapter I
8 Smooth the datz in Xxercise 11, Chapter I
8. Note thut Exercises 2 and 4 of Chapter T are already smoothed.

The Preservation of Areas. In the illustrative data at the
beginning of Chapter 1 the precipitation of 3.5 inches in March
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is the total precipitation for the entire month. With a base of
one unit, then a reectangle of height 3.5 will have an area equal to
the total precipitation. Likewise the rectangle on the July unit
as a bage will have an arca cqual to 3.6 which is the July precipi-
tation, ‘The prices of Kxercise 13, Chapter I, ean in similar man-
ner be represented by rectangles with heights equal to the respec-,
tive prices and with unit bases, The population data of Exercise
3 of the same chapter may be represented by rectangles whith
are not adjacent, and have nine rectangles omitied betwe’eﬁ sue-
cessive census years. N

After the curve is smoothed each rectangle will d altered so
as to have a curved top. The total area under the finished curve
will then be the sum of the areas of the modified rectangles. The
First Bule of Preservation of Areas is thaf e curve should be
s0 smoothed that the total arec under the(Pesulting curve is equal
to the sum of the areas of the ar-igp'ﬁi-:il’ ‘?‘ectangles. Sinece, for
instance, the monthly precipﬁféﬂtﬁfﬁ‘lﬁﬁﬁw QPR HE the sum of
the daily precipitations it is a@fsonable to assume that the
monthly sum is more stable thai is the daily or weekly sum and
henece we have the Second{Rule of the Preservation of Areas;
namely, where possible, the'areas of the individual rectangles are
to remain uﬂc}amged.\?}‘hﬁs individual preservation of areas will
result where, in sméothing, there is added to and subtracted from
each rectangle dfeyual sum.

Within "\t@e"requirement thai the cutve must be free from
abrupt changes in direction the fwo preceding working rules fur-
nish a‘ﬁa’i}ly comprehensive basis for the smoothing of statistical
data:) o later chapters more detailed rules will be discussed.
fowever, for much data the present rules are sufficient.

In the illustrative plotting, at the beginning of Chapter I, of
the data of average monthly precipitation the vertical scale was
laid off on a line through the January point. In comstructing
rectangles for smoothing, it would be convenient 1o have the
January and other perpendiculars at the middle of the respeclive
intervals. The zero point on the horizontal scale is then at the
beginning of the first interval and the vertical distance for the
first point is taken, not on the vertical scale line, but above the
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mid-point of the interval. Whenever the curve is to be smoothed
the scale-is marked off in this way, otherwise the scale is laid off
as explained at the beginning of Chapter L.

Exercises
10, Applying the rectangle method of this Chapter smooth the illus\
trative data at the beginning of Chapier I.

11. By the rectangle method smooth the data of Exercises 11 and\lz
of Chapter 1. O

L &

The Adjusted Data; Interpolation. Since in gendral it is
impossible to preserve exactly the arvea of ea,ch\r(,(,tangle the
process of smoothing will lead to values differing fron: the origi-
nal data. The data then is said to be de}l{t&ﬂ or graduated or
smoothed by means of the curve. In acqq(iianee with the reason-
ing at the beginning of this chapter t.he’adjusted values are to be
taken as giving a fore ¢ ignifieant nie‘a of the true trend of the
data than d¥e¥ tﬂgr?)%l%'ﬁnaarﬁ}gg’?a " Accordingly, to obtain the
best estimate of an mtermed]ate boint measure the corresponding
ordinate of the smoothed gur¥e, or measure the appropriate area
under that curve, ’I‘hus\ the rainfall during the first week in

June is obtained b}\measurmg the arca under {he curve on the
first one-fourth of ihe' June base unit.

Test of axGtaduation. The extent fo which smocthing pre-
serves the gbgns of the individual rectangles is often taken as a
test of t&é\iﬁpropriateness of the smoothing or gradunation. The
smogt}&@ eurve Is said to fit the data and the term ““goodness of:
fit’23% used to denote the appropriateness of the methods used

‘"m fhe process of construeting the smooth eurve. One measure
f the goodness of fit is the extent to which the areas of the in-
dividual rectangles are preserved. In applying this test two
columns of numbers are set down, in one the original values and
in the other the adjusted values. The differences are then taken
and studied. Other conditions being equal the smoothing with

. the smallest differences is the best.




INTRODUGTION TQ MATHEMATICAL STATISTICS 23

Exercises

12. Diseuss the goodness of fit of each of the curves smoothed in the
preceding exercises,

Determining the General Trend of the Data. The charae-
teristies of 2 movement of prices over a number of years can be .
determined from the smoothed curve. Thus a general upwal:d
trend of prices may be shown by a rise in the curve, <\

A general movement may be pictured by drawing a stidight
line, unless there are significant indications of a curvedi trend,
or more than one straight line where there seems to p&inore than
one distinet movement. This amounts to a straight)line smooth-
ing of the data. With data not conforming closgly to a straight
line there is likely to be some uncertainty in'the exact location
of the straight line or lines but since the lifies are but the pictures
of the ideas of general increases or dgaélieé.ses the uncertainty is
neither greater nor less thamviw thrdahibeeminty im the ideas of
the general movements themselvesh™

Periodic Data. 1In smootﬁii:l:g and determining the general
trend of data care must hé taken that the data is not smoothed
to conform 1o a straig I’gne’ when there is an inherent periodieity
in the material. The data of Exercise 12 of Chapter I exhibits
significant tendene\i'eé' for the values to be high for a few years
and then consigténtly lower for a few years and then higher, and
so on, througli/more or less regnlar and uniform cycles. In
smoothing%u'eh data the idea should be to determine a uniform
cvele a.nd, then smooth the data into the enrve made up of the
det,rgl‘:ﬁ“rﬁxied ¢ycles. The problem of smoothing such data is com-
plicated by the fact that the curve in addition to being composed
of a series of similar loops or arches also has a tendency to rise
or fall. Thus, imports of the U. 8. have increased on the whole
_ during the past 50 years though there have been increases and
decreases following each other in fairly regular periods,

Oceasionally it is possible to draw a periodie curve by an
inspection method but it is usually necessary to rely upon some
form of sine curve which requires eonsiderable mathematieal
knowledge to censtruct.
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Significance of Informal Methods. The informal inspection
methods of plotting, smoothing, interpolating and graduating
data referred to in this and the preceding chapter are, it may be
repeated, adequate in many cases. Even if more elaborate
methods are to be applied it is always well to make a preliminary
uze of inspection methods, QY

The preliminary ingpections may give the statlstman the
information which his purposes require. And they ma¥ be of
the greatest value in determining what more elabora’se ‘methods,
if any, should be applied. RO

Makeham’s Law of Mortality, It shouldche of interest to
read at least the explanatory part of Ap ¢udix ITI on Malke-
ham'’s Law of Mortality for an illustration of how a trend may
be diseovered from simple considerationss ~

www.dbrauli bExm-.g’[?ﬁg‘n

13. Plot the following da.ta, s.mooth and then examine it for peri-
odieity and other gemeral trends\So as to give an answer to the question
whether the month of OctobérMs now warmer or ecooler that at other times
of the past 62 years. ‘\

&&™
Mean Temperature for October, 1878-1935—Columbus, Ohio.

Year Tenip'} Year Temp. | Fear Tempy | Year Temp.
18798 ,..... AN | 1894 .., ... 55 11910 ....... 58 11926 ....... 54
1879 .\.} 62 | 1865 ....... 48 | 1911 ....... 54 11927 ....... 59
1880 . w\o.. 52 (1896 ....... 50 [1912 ....... 56 1928 ....... 58
1881 , .'.\ ..... 60 | 1807 ......, 60 [ 1913 ....... 54 1929 ....... 53
188800 ....... 50 {1808 ....... 55 (1814 ....... 58 11930 ....... !

wJI888 ... ..., 56 {1899 ...,... 58 (16815 ....... 57 11931 ,...... a8

N 1884 ........ 59 [1900 ....... 62 (1016 ....... 5511932 ....... 55
1885 ........ 51 {1801 ....... 56 31917 ....... 48 | 1983 ....... 54
1886 ........ b4 ¥1802 ..., 58 J101R __,, ... 58 | 1084 ....... 56
1887 ........ 5141908 ....... 55 11919 ....... 60 | 1935 ,...... 55
1888 ........ 49 | 1904 ... .., 54 11020 ,...... 60 | 1936 ,...... 56
1889 ........ 49 | 1805 ....... 54 | 1921 ....... 54 [1937 ....... 53
1890 ........ 54 | 1906 ....... 53 [1922 ..., ., 57 1938 ....... 57
1891 ......., 53 |1907 ....... 50 | 1928 ..., .. 52 {1939 ....... 57
1892 ........ 54 (10908 ......, 86 11924 .. .,... a9
1893 ........ 55 (1909 _...... 50 11925 .,..... 47
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14, Plot the following data of maximum wind veleeity in miles per
hour for each day in Oectober, 1039, at Uolumbus, Ohio, and smooth this
data, interpreting the smoothed eurve for trends.

Mazimum Velocity Mazimum Veloecity Mazimum Velocily
Date Miles per Hour Duate Miles per Hour Dole  Miles per Hour
3 14 i 13 21 25 o
2 i 15 18 0iileinnn. 25 BE.oa R
Beviriininan 12 1Boiiii, 28 SSAREEEREEE A%
S 17 e, 19 :; """" y :\Zg
S 28 B 13 o5 A }"f:;l
[ FU 20 AL T 14 27, &3 89
T e e 12 17, 20 28<<’ _______ on
8. i, 24 180, 13 2 B M 18
Briinnnns 24 L R g5 §% ............ 13
10, eieiiennns 31 20.. ... 19 ,gr}'m .......... 16
<
O
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CHAPTER III
FREQUENCY CURVES

Frequency. The following data of the heights of 750 fresh-
men students may be taken for purposes of illustrating the mean-

ing of the term frequency. oA\
The measurements are classified o show the nuniber of in-
dividuals for each inch of height. :"}". )
Measurements of Heights of Stl}dj&ﬁts
Height Number Height!  Number
61 2 68, 126
62 10 69 109
63 11 Yo 87
64 www.dbl'gﬁlibral'y@r}g_in 71 75
65 57 a8 72 23
66 93 &N 73 9
67 106\, 74 4
L 750

Height, theattribute or characteristic liere under considera.
tion, is in'this\tahle measured to the nearest ineh, giving a group
or class"'gﬁbi'val of one inch. A class interval or class is ordi-
narily\designated by the value of its middle measurement, and
the 'g{lass limits are Ioeated on either side at a half unit’s distance

__from this mid-value. All individunals, for instance, with height

“Pétween 67.5 and 68.5 belong to class 68; here the limits are
67.5 and 68.5 and the class is designated by the number 8. For
purposes of computation instead of using the mid-values 61, 62,
63, ete., the classes may he numbered 1,2, 3, ete, and these num-
bers used as class numbers. Again, the classes may be numbered
in both ways from some point, as 68, within the range. This
latter numbering would give classes as follows: —7, —6, —35,
—4, —8, 2, —1,0, +1, 42, ete.

(26)
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The objects measured or enumerated are referred to as
variates or simply as individuals.

The size or freguency of a class is the number of individuals
within that elass, and the total frequency is the sum of all the
clags frequencies. The table as u whole constitutes a frequency
distribution and shows the humber of times each class oceurs., | /A

To illustrate the method of constructing a frequency digtri
bution let us take the following data: R\ \)

Chicago Monthly Top Beef Cattie Prices ..\

Year Jan. Feb., Mar. April May June July Aug. Sept, ,Czt'.t. Nov, Dee,

59075 $10.05 $10.00 $10.90 $11.50 $11.30 $IL50 $11,58~§$11.60 §12.40 §13.00
950 %1%  BO0 9, 3 X 10,50 1350 7 1 5

i

$0.8
1915 97 65 903 1045 10, 50 ) 10.60 1035 1160
1914 250 973 975 055 060 945 1000 1090 65T 11.00 1100 1140
1013 95 25 93 025 910 820 920 025 \OW0 975  9.85 10.2)
B2 875 900 285 900 540 980 985 WGENMI0 105 1100 1L
11 710 705 733 740 650 675 735 8%0)» 825 90D 925 9.3
1910 840 830 885 86 875 88 B0 RS 830 BN 775 755
109 750 715 740 715 730 750 74N BOO &30 910 9.5 950
1908 640 625 750 740 740 EA0  SZNVEI0 783 765 | 800 &M
1507 730 725 690 675 656G 7.0 (PS0) R60 735 745 T 725 6.5
1906 650 640 635 638 ﬁ.mw&dﬂibminhbﬁﬁy,oﬂ:%jn 730 740 7.90
1905 635 643 635 200 6B 635625 6500 O 640 675 7.0
1904 590 600 580 580 590 6§D C6.65 640 655 200 730 265
1902 685 615 575 AR 565 (8§ 565 610 613 60D 585 600
1902 775 735 740 730 Z70WE0 885 900 B3 87 240 795
1901 615 600 625 600 &L0NV65F 640 640 660 650 725 80D
1900 640 610 605 600 AES 500 585 63 &l 60 600 230
1899 630 625 590 585 JE73 575 600 665 650 .00 S5 B3S
1898 550 585 580 5ggm\s.so 535 568 575 58 B9 6235 625
187 550 540 565 _5AG ) 545 530 525 550 600 540 600 5.6
1896 500 475 475 S4¥57 455 465 460 500 530 530 545 65D
1895 580 580 660 640 600 600 600 60¢ 560 500 550

N\

The Width‘c{f ‘the classes must first be determined. It would
be possible tolhave a class for each quotation but it would be
found highl#inconvenient, The error infroduced by the group-
ing of she” measurements is ordinarily not of great practical
signiﬁé,ance. A general rule in determining the width of the
clasl@éé, and hence of the number of classes, i3 1o make as wide

\Qlfisses ag is practically feasible in view of the purposes of the
analysis. The number of classes iz perhaps most often from ten
to twenty. In this case the width is taken as fifty cents and the
limiting quotations of each class are included in the class.

On a ruled sheet the classes are written to the left with space
to the right for seoring. The data is examined and a score made
for each oecurrence of the class. Thus Class. I with the range
$4.50-$4.99 appears February, March, April, May, June, July,
1896, As an oceurrence is observed a mark or score is made.
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After the scoring is completed the frequency of each clags, that
is, the number of tallies or scores for each class, is noted and
written in a column,

The above operation results in the following frequency dis-
tribution:

Frequency Frequency,

Class Count Class Count

$4.50—4.99 6 $9.00— 9.49 A3,
5.00—5.49 14 9.59—— 9.99 18
5.50—5.99 3¢ | 1000—1049 N\ 5
6.00—6.49 47 10.50—10.99 /% 7
6.50—6.99 25 11.00—1149N " 9
7.00—7.49 24 11.50—109% 5
7.50—7.99 18 12,0032 49 1
8.00-—8.49 12 12.50-212.99 0
8.50—8.99 15 1200—13.49 1
www .dbraulibrary .org.in -
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;Ekéfcises

1, Construet a frequoney, table from the Chicago Monthly Top Beef
Cattle Priees using class imeévala of one dollar and compare with the dis-
tribution obtained with alelass interval of fifty cents.

2. Study the freguency distributions of population with respect to
age from a Report 'of the TUnited States Consus with special reference to the

“size of the variguf‘glass intervals and note two geveral forma of stating the
frequencies of\ﬂle classes.

3. Esxamiue the different forms of frequeney distributions appearing
in the }e{ger’t of the Medico-Actnarial Boelety’s Investigations, Vols. I,
II, TIT\IV; also in Biometrika, Agricultural Experiment Station Bulletins
andwfii“other aceossible sourees.

m: /4 In which of tho excreises of Chapter I iy the data in the fre-
\geney distribution form?

Plotting a Frequency Distribution. The illustrative data
at the beginning of thig Chapter is plotted by locating 14 equi-
distant points on a horizontal line, one for each height elass
from 61 to 74 inches inclusive. Then at the middle of each in-
terval a vertical line is erected with a height proportional to
the corresponding class frequency. In this way a point ig ob-
tained for each class.
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As in Chapter I, a rectangle is constructed on each interval.
It must be apparent that a reetangle in the case of the fre-
guency distribution has in cvery case a significant statistical
meaning—it 1y the frequency of the class. ITence the sum of
the areas of all the rectangleg is the total frequency of the dis-
tribution. ~

Smoothing the Frequency Curve. With the rectangles
drawn, the smoothing of a frequency distribution is ip\’zihx\wisn
different from the smoothing of the data discussed in the’preced-
ing ehapter. However, for the frequency curve thé two rules of
the permanence of arcas have a stronger justificatibn because of
the more definite significance of the areas unded the curve.

With practice in the construction of stQﬁistical diagrams and
eurves the rectangles may be dispenséd»with and the curve
drawn by inspeetion. Also the broigeﬁ}ine obtained on joining
the ends of t}:.te ordil.mte‘s, ca\Lle(\lu t&ngafﬁﬁggglnb% &gl goD, may be
smoothed by inspection into tﬁlﬁ.’ljequlre eurve.” Smoothing by
inspection frequently gives ashaccurate results as the data will
justify, N\

A\ Exercises _

5. Smooth the i].lpa?ls}tive dats at the heginning of this Chapter.

6. Smooth the frequency distribution of Chieago Monthly Top Beef
Cattle Prices for 50\gent intervals,

7. From @uth” obtained from a financial paper comstruet the fre-
quency distribfitioh and smooth eurve of the prices of preferred stocks for
any ome mga.rik}f day.

S.QD}:;W the smoothed curve of the following weight distribution of

student
WeightClass W02 107 112 117 122 127 132 137 142 147 152

. { Froquency 8 13 20 48 76 93 83 110 93 49 56
\ } Weight Class 157 162 167 172 177 182 187
Frequeney 31 22 13 11 3 2 9

9. Construct the smooth curve of the distribution of ages of a class

of bigh school graduates:
Ages 11 12 13 14 15 16 17 18

Numbers 0 T 45 186 114 61 & 0

Use of the Frequency Curve. The frequency curve does
not give a chronological picture of the variations in the data.
Instead it shows the number of times that each value ocecurs.
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. The frequency curve of precipitation for a dryer climate is
Iocated to the left of that for a more moist climate because
months with small preeipitation occur more frequently in the
dryer region. A frequency curve of higher prices lies further
to the right than does that of lower prices, so that by construct-
ing the frequency curves of comparative price data it can
readily discovered which series of prices tends to be higher.s

¢\

4 "\
Exercises \,

1). Prepare from the following data the frequency, Qistyibution of
mean monthly temperatures in degrees at Columbus for .I'a'.nuary and for
July. Plot both distributions on the same diagram auf\compare.

Years Jan. July| Years Jan. Julyy Pears Jan. July
187% .. 78 | 1899 29 764 1020 22 71
1879 - 26 78| 1900 33 67| 1921 4 Y
1880 4 75| 1901 30NV80 | 1922 27 T4
1881 24 79| 1002 20~ 75 | 1923 LR &
1882 33WW%?]"?¢ﬂﬁbraryI?~r fg‘sm 74 | 1024 26 71
1883 27 T4 1904 o5% 23 73| 1928 29 73
1884 20 T4 1 1905.8% 24 75 ) 1926 28 74
1885 23 77 | 1996 37 731 1997 T4
1886 24 72 | 100% 3¢ T4 1928 30 75
1887 27 80¢\1603 30 76| 1929 28 T4
1888 27 73 1009 33 72 | 1930 29 77
1889 3¢ (9§ 1910 28 75| 1931 33 79
1890 3904 74 | 1011 3¢ 76| 1932 40 75
1891 33> 70 | 1912 19 45| 1938 36 76
1892 8 74| 1913 37 76| 1934 34 80
1893 \\ 19 76 | 1914 34 78 1935 31 T8
1894 35 78| 1915 © 28 3| 1938 24 80
1895 24 74! 1016 36 79| 1987 38
Ag95) 31 74| 1017 30 74| 1938 31 76
ANF 1 H 26 77 | 1918 16 72} 1989 35 75
1898 33 78| 1919 8 78

Typical or Representative Data. In discussing an inercase
in prices it is impossible to quote all past prices and recourse
must be had to a typical list of prices. The eondition of irade
in certain industries, for instance, is taken as indicative of the
condition of all business, In comparing the prices of heef and
the prices of corn the real aim of the investigation may be to
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find an underlying eonnection between the two series of values—
a connection which will be indicative in any particular year: Tn
such a study the historical statistics of the two price variations
are in reality used as representative, as typical, of the manner in
which the two prices are related. The frequency form of distri-
bution is peculiarly well adapted to typieal data.

Random Sampling. Typical or representative data i;
usually spoken of as data of random sampling. The term 'g:;(?pu-
lation is frequently used in a general sense to mean the hédy of
data from which a sample is taken. By m'ridom:s[},ynph:ﬂg 13
meant a taking of a part of the data and making the seleciion in
such a way as not to presuppose any indicationg~JIn other words,
data selected by random sampling is assumedvto be free from
prejudiee or bias, N

. Bias or prejudice would be intrqdﬁcéd in the seleetion of
750 students, to refer to the data %thi ’,bC‘ha ter as an illustra-
tion, if only students of weigﬁ’tw(}“{ie;' %glpbaz{ s Were measured.
I% is possible that bias might be introduced through the selection
of students from one section af ‘the country only. Anocther pos-
sibility for bias would be, introduced by taking only students
of a certain age, Bigs?or prejudice, however, is in a sense a
relative term and héslameaning only in connection with the pur-
poses for which phg\data is to be used. If the Student Height
Data at the bedintiing of this Chapter is to be taken as showing
the distﬂb}lf\i(l]] of the heights of freshmen students in college
then samplés from students of a speecific age or specific weight
woul(‘l&%ih" all probahility, not give reliable distribution for a
general freshmen student population. On the other hand, it
n;tht be desired to study the total distribution of students of a
Nspecial weight elass or of certain ages in which cases the sampl
would not be biased. :

In random sampling data there will be variations not aris-
ing from bias or prejudicial selection and which have no sig-
nificance in reference 1o trends. Thus when 100 coins are fossed
again and again there are in very few throws exactly 50 heads
and 50 tails. .

The errors of random sampling or aceidental variations fol-
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low the laws of probability and are amenable to mathematical
compufation. In dealing with representative data it is always
necessary to know the limits within which there is a reasonnble
probability that differences in data are the results of aceidental
errors of random sampling, and hence are not signifieant indices
of basic differences in the trends.

Random sampling, it must be evident, will yield the most
significant and reliable resnlts when the data from whigh.a} is
taken is hemogeneous so that it has as few variable character-
istics as possible. Thus, if the students referred tq"were all of
one nationality, age and weight the resulting fréquency distri-
bution of heights would be expected to gived Wetter fit when
applied to another similar set of students th@l 1f the group from
which the selection was made was comprided of various ages and
weights, This matter of homogeneityy.iﬁ be discussed later and
some mathematical indices derived férmeasuring it.

A smooth #it- PP PIUBERY a8 i presumed to depict the
underlying trend in the datq,,:ﬂié connection between two scries
of variates as ages and heights of students, for illustration. The
usefulness of such a curyeito the statistician, aside from the pic-
ture which it presents ofithe data in hand, lies in the possihilities
that the same undqri}qng trend will hold for other data.

One conditiohy to repeat, under which it may be expected
that the underly\ing trend will apply is that the data be similar to
the data fromi which the trend was derived. This idea is com-
monly\e%préssed as ‘‘conditions heing equal.”’

It must be evident that the more nearly the data is homo-
gehegous, that is, with the individual variates alike in everything
eﬁcept the characteristie being measured,—the more nearly

homogeneous the data is—the more reliable and trostworthy will
be the derived trends.

Practical Value of the Theory of Random Sampling, The
mathematieal terminology used in describing and messuring the
accidental variations due to random samply may tend to con-
ceal the practical importance of the theory of random sampling.
Again, the use of such illustrations, as coin tossing, may tend to
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give the idea that the applications of this theory rnight be com-
paratively unimportant.

Such material as coin tossing is used for illustrations be-
cause the application of the laws of prebability and hence of
random sampling are laid bare, as it were, in such phenomena.
These phenomena are not complicated by other conditions. In
other words, data derived from coin tossing, say, is highly\
homogenous. The price of wheat is the result of the interaction
of almost innumerable eauses, whereas the percentages tO\bE ob-
tained in coin tossing are the results of causes Wthh are com-
paratively simple,

The degrce of dependency which ean be plaeed in a sample
taken from a population is, speaking generally\ane of the main
comecerny of the statistician. He must acoqrdint'ly understand
the laws which define the possibilities farferrors. In beginning
his study of these laws he naturally wishes to work with simple
Hlustrative data, W, dbrauhbl ary orgin

Classes of Statistical Errors A clear distinetion must be
had as to classes of statlstlcal erToTs.

Data may be in error because of known and understood
eanses and such errors{{hay be removed by the applieation of the
proper corrections & Wind pressure may cause s more or less
constant deflectigh; instruments of measurement may have a
known error ;, al¢lironometer may have a standardized correction
to be added.t6.0r subtracted from each time observation.

A secand clases of errors may be labeled mistakes such as
c0pying§a" number incorrectly, Comparison with other data or
ﬁlﬁerenclng are two nseful methods of removing this type of

LEFror,

\\ ) Accidental errors constitute a third class. For illustration,
the repeated tossing of a coin only infrequently gives results
evenly balanced between heads and tails. This type of error has
been referred to as variations due to random sampling,



CHAPTER 1V
AVERAGES

The Arithmetic Mean. Let us add the J anuary cattle prie\es
in the data of page 27, Chapter III, and divide the supd By the
number of items. The result is $7.19. In this way @)huiber,
the arithmetic mean, is obtained. The characteris‘rtic}pﬁoperty of
this number is that each of the given values may/be replaced by
it without altering the total sum of the valnes?‘;,\

It is usual fo speak of the arithmetie Jilean simply as the
mean unless, in order to distingnish the’arithmetic mean from
some other mean, there is special nead for the defining word
arithmetic, O

wwwdbraulibrarx.m‘g.in
Exercises

1. Determine from the datd of Hzercise 1, Chapter I, the arithmetic

mean of the monthly preci{i{ation at Columbus.

2, Find from jnheiaata of page 27 the arithmetic mesn of the 1805
Top Beef Cattle priceh\}nd eompare with the 1915 mean.

3. On the.a:saﬁmption that the population of the. United States in-
creased uniformly“from 1920 to 1930 find the value of the annual inerease
and ther thé)estimated population for 1066,

N
4. \Compute the arithmetic mean of the Chieago Monthly Top Beef
Ca.ﬁglefp icea for the years 1895 io 1916,

+

/N5, By first assigning each monthly price of Exercise 4 to the ap-

" “Yropriate 50-cent class and eomputing the arithmetic mean of the prices

when so altered determine the effect on the value of the arithmetic mean by

substituting the elass priees for the ewact values. Tse the class numbers
in computation and translate the result in ferms of the proper interval.

" 6. To Exercise 4 there are 264 entries in the sum to be added. Show

that muek of the labor of the addition ean be avoided by selecting the equal

prices, then multiplying cach by the number of times it ocenrs, and adding
the resuling products to obtain the total aum of prices.

(34)
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The results of Exercises 4 and 6 suggest the eomputing of
the mean from & frequency table in accordance with the follow-
ing rule: multiply each deviation by its frequency, add the re-
suiting products, and divide this total sum by the total fre-
guency. The quotient is the value of the mean, Thus, from the
frequency distribution of Top Beef Cattle Prices of Chapter(
11, obtained on page 27, 6, 14, 34, 47, 25, 29, 18, 12, 15, 18, 18
5,7,9,5,1, 0, 1, the mean price is given by the expreulon—

146+ 2X14+3X 34 44X 4T+ 5X25-+6X29 +72<18+8>< 12

264
FIX15+10X184+11X18+12X5+ 13><7+M><9+15><5+

264

d =

H6X1+17X0+18X1 AN
264 ’ R

= 6.61, where 4 is the distanse’of the computed mean

from the origin. www:(‘:l.bj."au“library.org.in

The mean class is thus 6.613that is, 6.61 of the 50-cent in-
tervals or $3.30 from the origin which is the mid-point of the
class preceding the first,{ The mid-point of this class is 4.24
hence: the mean is 7,54() :

Whenever the ‘fﬁ}mency table is available, the method just
described is usualfythe shortest method of computing the value
of the mean, However, if the frequency distribution is not
needed for, \a:rhr other purpose and especially if an adding ma-
chine 1s,\a,t hand the saving of time in the computation of the
Tmean, docs not ordinarily justify the compilation of a frequency
tab]e merely for the one purpose of finding the mean.

\ “The following is the eomputation for mean height from the
data at the beginning of Chapter TIT.

Let us take the origin at height 60. Then the computation
scheme will be as follows:
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Computation of the Mean
Student Height Data

Class  Devigtion Frequency  Dev. Times Freq.

61 1 2
62 2 10 20
63 3 11 a3
64 4 38 152 &>
65 5 57 2854
66 6 93 538",
67 7 108 T
68 8 126 1,008
69 9 109 LN 981
70 10 87 ~NY 870
1 11 75 \/ 825
72 12 23 O 276
73 13 9 0 117
4 14 AT 56

, y 750 5,925

www,dbrauhbrar:ﬁ;g%,m
d= < —=17.90
N T50

Hence the mean height is 7.9 elasses, that is, 7.9 inches from
the origin, 60, and is{tl?erefore equal to 67.9 inches.

Statistical Broperties of the Arithmetic Mean. What s the
statistical signifieince and interpretation of the arithmetic
mean? If a‘higher price were substituted for one of the Janu-
ary beef ,,géﬁiw Pbrices the resulting arithmetic mean would be
larger,‘liut' not as much larger as the individual price hecause in
the process of obtaining the mean the price increase iz divided
bythe total number of prices. Hence a larger mean denotes

“thit, as a whole the values of the distribution are greater, ard a
smaller arithmetic mean is to be interpreted as indicating a
relatively lower scries of values. Furthermore, the arithmetie
mean is relatively more stable than iz an individual measure-
ment.

That is, since all increases and decreases are divided by the
number of variates the changes in the value of the arithmetic
mean are relatively smaller than are those of the individual
values, Thus a decrease of 50 cents must oeeur in each of the
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months in order to decrease the arithmetic mean by the same
amount. A decrease of 50 cents in one-half the variates de.
. creases the arithmetic mean by only 25 cents, and so on.

The relative stability of the arithmetic mean when applied
to the student height data means that if several groups of 750
- students were measured for height and the frequency distribu-(
tions tabulated and the means computed for each groupait
would be found that the means would vary but little whilé the
frequency of any one elass, 67 inches for instance, would vary
considerably from distribution to distribution. RO

It is to be noted that a single inerease of 5@ éents in the
priee of one month has exactly the same effecton the value of
the arithmetic mean as does a 10 cent inerease'in the prices of
each of five months, But is this true st tisﬁcally? Should the
exceptionally high price be given so much ‘weight? Should the
persons of exceptional height he &m@bﬁﬂ@% _%q.gsi:ﬁongly in the
group of persons whose height is measured {

This emphasizing of ext;'eﬁ},é' values raises a gquestion of
whether the value of the mean may always be significant.
Whether an item is unduly large can be determined only from
a study of the data jtsél for the mean conveys no information
whatever as to the ‘dk}i'ibution of the variates; it tells only of
their general size.\Fhat is, the statistical function of the arith-
melic mean isfesséntially to measure the size or magnitude of
the data as d gwkole.

The’m\fn. In any disribution the sum of the deviations
from. the mean is zero. That is, the sum of the positive devia-
ti@{ns\'or the measurements to the right of the mean is equal to
‘the sum of the negative deviations or the measurements to the
left of the mean. The distance of the mean from any origin js=
obtained by taking the sum of the deviations from that origin
and dividing by the total frequency, hence when this distance is
zero, that is, when the origin is at the mean, the total sum of the
deviations must be zero.

Weighted Arithmetic Mean. An apparent modification of
the arithmetie mean is illustrated by the following. It is desired
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Computation of the Mean
Student Height Data

Cluss  Deviation Frequency  Dev. Times Freg.
61 1 2 2
62 2 10 20
63 3 11 33 ~
64 4 38 152
65 5. 57 285,
66 6 93 ;51 5
67 7 106 . \NT742
68 8 126 £NT,008
69 9 109 AN 981
70 10 87 ~ 870
71 11 75 \% 825
72 12 23 276
73 13 D" 117
74 14 ~3 56
750 5,925

www.dbraulibrar&céﬁg.gn
' d= 5 =7.90
. SN 750 .
Hence the mean heipht is 7.9 classes, that is, 7.9 inches from
the origin, 60, and igtherefore equal to 67.9 inches,

- N .
Statistical Pl%ertles of the Arithmetic Mean. What is the

statistical significance and interpretation of the arithmetic
mean? If @ Higher price were substituted for one of the Janu-
ary beef éttles prices the resulting arithmetic mean would be
largerabut not as much larger as the individual price because in
the Process of obtaining the mean the price increase is divided

mbj{' the total number of prices. Hence a larger mean denotes

\ that, as a whole the values of the distribution are greater, and a
smatler arithmetic mean is to be interpreted as indicating a
relatively lower series of valyes. Furthermore, the arithmetic
mean is relatively more stable than Is an individual measure-
ment,

That is, since all increases and decreases are divided by the
number of variates the changes in the value of the arithmetic
mesn are relatively smaller than are those of the individual
values. Thus a decrease of 50 cents must oceur in each of the
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months in erder to decrease the arithmetic mean by the same
amount, A decrease of 50 cents in one-half the variates de-
creases the arithmetic mean by only 25 cents, and so on.

The relative stability of the arithmetic mean when applied

to the student height data means that if several groups of 750

-students were measured for height and the frequeney distribu-
tions tabulated and the means computed for each group it
would be found that the means would vary but little while the))
frequency of any one class, 67 inches for instance, would sv\ary
considerably from distribution to distribution. £

It is to be noted that s single increase of 50 gents in the
price of one month has exacily the same effcct on the value of
the arithmetic mean as does a 10 cent inerea& in'the prices of
each of five months, But is this true statigtically ? Should the
exceptionally high price be given so much'}feight? Should the
persons of exceptional heigh\E Je aﬁ}g{.}?ﬁ}ggg/ﬁﬁ,ggﬁong]y in the
group of persons whose height is measdred !

This emphasizing of extreme¥alues raiscs a question of
whether the value of the mefft may always be significant.
Whether an item is nnduly{arge can be determined only from
a study of the data itself"for the mean conveys no information
whatever as to the distribution of the variates; it tells only of
their general size. That is, the stalistical function of the arith-
metic mean is eéssentially to measure the size or magnitude of
the data as o whole.

Theogén: In any disribution the sum of the deviations
from t}zé’;mean is zero. That is, the sum of the positive devia-
tions(or the measurements to the right of the mean is equal to
the sum of the negative deviations or the measurements 1o the
left of the mean. The distance of the mean from any origin is
obtained by taking the sum of the deviations from that origin
and dividing by the total frequency, hence when this distance is
zero, that is, when the origin is at the mean, the total sum of the
deviations must be zero.

Weighted Arithmetic Mean. An apparent modification of
the arithmetic mean is iltustrated by the following. It is desired
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to obtain an index of food prices by taking the mean of the price
quotations of 135 articles of food. It is decided, however, that
one of the quotations should be given twice the weight of the
other articles. This is done by multiplying this quotation by
two and taking the double quotation in the total sum. The
article is said to have a weight of two. The idea of wolrht e
troduces ro new principles into the computation of the arith-
metie mean. Stated in another way, there is no ehan&é"in\ the
properties of the arithmetic mean if some of the varidles are
identical in value. Again, when the arithmetic ®4n is com-
puted from a frequency distribution the frequéncies may be
looked upon as weights.

Adjustment or Graduation Formulag: An adjustment or
graduation formula of wide and convehiént adaptability to the
smoothing of data is based on the apithmetic mean. It is called
the meving %.}:\{3.'1\‘.% %l'aulibral' _or‘g'.izn ;

A moving average baseg o, the average of five conscentive
terms is the resuit of adding.the first five terms and dividing by
five and using this average as the third term, and then using the
average of the second fd\the sixth terms for the fourth term and
80 on. When the vféra:ge has been computed for each such set
of five terms a hew series will be at hand for all except the
original two hgbinning terms and the final two. These four
terms may.llemoothed out by inspection, if necessary.

The regulting series after the substitution of the first scries
of moyhig averages will give a smoother curve than a curve from
the original data. The process of the moving average can be

,):g];;baited as applied to the successive averages. The moving aver-
age method of graduating or smoothing data is especially appli-
cable to data where there are unaceountable hut similar fluetua-
tions in the data from elass to class, This method works best
where there are a fairly large number of classes,

An extensive application of this method has been made in

~ the graduating of mortality tables. It is often used in smoothing
data in which the general trend is obseured by the presence of
more or less regular fluctuations. In this latter case the number
of classes grouped together should be determined by the lengths
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of the ¢ycles of the fluctuations. If the cyeles are irregular in
length the method of the moving average is not likely to yield
satigfactory results,

Exercises

7. Smooth the data of Student Heights at the baginning of Chapter
ITI by taking the means of each successive three terms, then of five terms.

The Geometric Mean. The arithmetic mean, it has beeh
seen, may be substituted for each item of the data and leave the
sum of all the items unchanged. Where the data consls’ts«of per-
centages of increase or decrease it may be convenjéup to obtain
an average percentage which when used in phce“é each of the
variable percentages will give the same ﬁna\ figure. Such an
average Is called the geoinetric mean. D

Let the price of a certain articlesJ4r) each year from 1934
to 1939, to illustrate the ge@matmmmeﬁmabg exprassed as a per-
centage of the preceding year as f@llows {assuming 100 for the
1934 price), 105, 118, 109, 102 \115. The percentage change
from 1934 to 1939 is obtained by multiplying together the five
pereentages and is apprgsg]mately 158. What uniform annual
percentage of increaseawill give the same percentage of increase
of 1939 over 1934?.&%)% {(1+71) be the constant multiplier or
percent. Then u:e',h%we

(14%)¥=105 X 118 X 109 X102 X 115,
’\:,,\“ = 1.58415.

and (1+r)= v1 58415,
a\" = 10964 (by logarithms).

\

Each of the unequal increases in the series may therefore bé
replaced by the factor 1.0964 and still give the same produet.

The population of continental United States in 1930 was
122,497,000 and in 1920, 105,711,000. On the assumption of a
~ uniform rate of increase during the deeade what should be the
value of this uniform rate in percent? Ag above, we have

Q"
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(1+1)*0= 122,497/105,711 = 1.158791.

Hence (1 + 1) = v/ 1158791
=1.0148

It may be noted that according to this method the popula-
tion in 1923 was equal to 105,711,000 X (1.0148)3 = 110,474,338\
For any but the simplest problems the computation ofithe
. . . K@
geometric mean eannot be accomplished without the nsg .gf“log—
arithms. The following computation of the geometrie mean of

student heights from the data of Chapter III illfisthates the
process, R4
The geometric mean height = (612><62”'><63'11>1<64”><65”><
66“)(671“)(6812“)(691”)(7037X7175X7223X’(3{%74“) 750
Henee 750 X log geometric mean =4V
2 log 61+ 10 log 62511 Tog 63+
38 1053 641, - 57 19 1‘1615“+ 93 log 66 +
168" fog 87 -+ 126 108768 + 109 log 69 +
87 log 70 + 7.5}110g 714+ 23 log 72 +
9 log 73+ % log 74 =1373. 70315,

On dividing by 750;\we have log geometric mean = 1.83160.
The number of whick this is the logarithm is 67.858 or 67.86, to
two placeg of decifiipls.

Hence thedgéometric mean height is 67.86. It is interesting
to note that/this geometric mean for this data, 67.86, is very
close to t]{:a}i‘ithmetic mean which was found to be 67.90,

*\

Pijl:)perties of the Geometric Mean. The geometric mean,
ggl,iké‘ the arithmetic mean, is most affected by the smaller de-
\Q'a‘stions because a small factor in a product has a proportionately
greater influence on the result of a multiplication than does a
large factor.,

Each property of the arithmetic mean has a corresponding
property for the geometric mean because the logarithm of the
geometric mean is the arithmetic mean of the logarithms of the
deviations. From thig logarithmie correspondence ail the prop-
erties of the geometric mean can be derived from those of the
arithmetic mean. Tt ig apparent, for instance, that the geometric
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mean is the result of a series of deviations multiplied together in
a way exactly parallel to that of the arithmetic mean and a
series of terms added together. Illustrations of this parallel are,
a chain of relative prices and a series of price increases; interpo-
lation on the assumption of s uniform rate and of a uniform
increase; compound interest and of simple interest. !

Makeham’s Law of Mortality. TReference is made to thqde
- seriptive part of Appendix III for an application of the ganera.l
idea of rates of change. The derivation of Makehams Law of
Mortality as given in this Appendix should be studled by’ readers
with some mathematical training. ’ \

The Median. Iet the years 1901 to 1{39 Inclusive be ar-
ranged in order of the March preclplt{}(}n at Columbus be-
ginning with the lowest, "We then have, Wwith the data measured
to hundredths of an inch: www, dhL -aulibrar y.org.in

1910 .o, 0.28 1923 ............... 3,04
1915 .o, 110N 1036 L 3.10
1931 ..., 1385 1920 ... .. ..., 3.32
1937 oo, A6 1917 L 3.59
1929 ... o176 1907 3.97
1901 ........ .5 NLL 182 1903 Lo 413
1918 ... .. oN. ... 185 1924 ............... 428
1905 ... .,\;;? ....... 187 1988 ............... 432
1930 . ubdennnnn. ., 213 1922 ......iii..... 454
1926 0% e 216 1912 ............... 456
1938 220 1919 ............... 158

P (-7 R 220 1906 ............... 459

NA2S 225 1916 ............... 4.88
1911 oo, 236 1904 ............... 493
1939 ..o 241 1907 il 521
1914 ... 246 1933 ... ...l 5.44
1902 ... 263 1908 ............... 6.03
1909 ... 268 1921 ............... 7.66
1928 ... 279 1918 ............... 8.09
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The middle year, 1935, in this ordered arrangement is called
the median yeer with respect to March precipitation, the median
precipitation of 2.81 inches being that of the median vear, with
nineteen years having a smaller precipitation and nineteen years
having a larger precipitation.

In general the median individual is defined as the individyal
so located that there are as many individueals with a, gheater
value of the characterisiic as with a losscr valite, and thednidale
value of the measured characteristic i spoken of aslthe median
value of the characteristic. N

If the number of variates or meﬂmlrelnents:is even, the me-
dian is assumed to lie between the two middidst variatoes,

It is obvious that the above median ;{rceipitation year might
have been obtained by a simple procesi’pf vounting and inspec-
tion of the data without setting dagfivthe variates in order.

www.dbrauli bl'am}'-:&igés

8. From the data of Exerdise 10, Chapter II[ deiermine the median
temperatures for January and«]fﬁly at Columbus.

9. From the Chicage{ Monthly Top Beef Cattle priee data of Chapter
IIT determine the met}iiatk\nonth]y price.

‘When the daﬁ*\ls in the form of a frequency distribution the
computation gfvthe position of the median is much faeilitated.
AH that ig:]ééeessary then is to start from one extremity of the
distribq_i;i@ and include successive classes until half the total
fl‘equ@ey is obtained. The only point of difficulty in this case
is j’gchen the median is located within a class. Then it is meces

. #ary to interpolate within the median elass for the more exact

osition of the median. To illustrate the method of interpolation
let us find the medinm student height from the data at the be-
ginning of Chapter ITI, Ifalf of the number of variates is 375.
Counting from the lower extremity we find, up to and including
class 67, a frequency of 317, so that it is neccssary to take 58
individuals from class 68. Hence it may be assumed that the
position of the median will be 58/126 of a unit or 0.46 inches
Erom the left boundary of class 68, Since this boundary is at
67.5 the median is located at 67.96 inches,
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Geometrically, the median deviation locates the ordinate
which divides the area under the frequency curve info two equal
parts.

The median can be found directly from a cumulaiive curve
by drawing a horizontal line throwgh the point on the vertical
scale correspending to half the total frequency. The abscissa of
the point of crossing of this horizontal line and the curve is the

median deviation. O\
e\
Exercises

10, By drawing the cumulative curve locate the median student

height. RS /

11, From the frequemey distribution of Chieago Monthly Top Beef
Cattle prices of Chapter ITT determing the median prica by using the enmn-
lative curve. INY

12, What is the median peint of populatihp s determined by the
Burcan of Census?

13. Distinguizh the medla‘ﬂ’\'p‘eﬁi.@—bbﬂ%bbﬁ%ﬁdﬁr &gl the center of
population,

Quartiles. Each haif of thé dlstrlbutlon, one on either side
of the median, may be divided into two equal parts. These two
points of division are thal’(wst and Third Quartiles. _

The two quarterxﬁgxd the median thus divide the variates
into four classes of bqudl frequencies. .

In data havm\g Ppredominately large frequencies near the me-
dian the quagtiles are relatively close to the median, and in
widely scat-j:ei;' data the quartiles are relatively far from the
median. is property of the quartiles is developed and applied
in the foﬂow1ng chapter.

~Dec11es. The decile variates are the variates which separate
thx frequeney into ten equal classes. The median js, of course,
the fifth decile but the quartiles are not deciles. The chief use
of the deciles, like that of the quartiles, is in determining the
gshape of the distribution.

Exercises

14; Determine the quartile and decile prices from the data of Chi-
eago Menthly Top Beef Catile prices of Chapter TIL
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Statistical Properties of the Median. The position of the
median ordinate depends solely on the relative values and not
on the actual values of the variates. The data nced be given
with only enough exactness to permit the arrangement of the
variates in order with respect to the attribute considered. More-
over, it i8 only the arrangement near the median value that must\
be carefully attended to, consequently the median ean not give
detailed information of the variates at the extremitjes of 3he
ranges. O

There is apparently no apriori reason why the v:al’ue of the
median should not show considerable variation fréisample to
sample taken from the same material, but in praetiec it is found
that the median shows as high, if not higher, de¢gvee of siability
than does the arithmetic mean. Thus if @’séebnd group of 750
students were measured as to height and-the median computed it
would most likely be found to differ onlyx slightly from that of
the group already dbrasbdiar T @owness of change jn the
median means that the median 4§ hot greatly affected by the
Presence of aceidental and irn@lé%rént influences. That is, differ-
ences in the value of the median are not likely to be merely acci-
dental and hence the medidn significantly measures properties
of the material, Fm\iﬁgt’ance, a distribution of wages showing

2 higher median wage is most likely to be significantly a group
of higher wages, (7,

- The Prohable Deviation. The median variate divides the
data into'two classes of equal frequencies. Hence it is an even
chanee thét an individual selected at random will fall into a
desighated oune of the two classes. If the median keight of fresh-
wien students is 68 inches it is an even bet, for instance, that a
stdent concerning whoge height nothing is known has a height
less than 68 inches.

Likewise it is an even bet that a student selected at random
will have g height between the first and third quartiles. The
range from the median to the third or first quartile, one-half of
the range within which the chances are even for an individual
measurement to lie, is cailed the probable devigtion.
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Exercises

13. Determine the probable deviation for Chicage Monthly Pop Beaf
Cattle prices from the data of Chapter ITI,

The Mode. It is to be noted that in the frequency distri-
bution of student heights, elass 68 has the greatest frequency or
number of students and that the high point on the frequency
curve is within the same class, The class of preatest frequeney
is called the modal class and under the curve the deviation *@Fh
the highest ordinate, the modal devigtion. A mode is thws de-
fined as o class or devietion of greatest frequency, mﬂre‘ aceu-
rately, it {s the class or deviation of greater frequengt than that
of either the class immediately greater or immediditely less. This
second definition allows for distributions hang more than one
mode. -

Exercises \

16. Determine the modal dew&@wwﬁ%ﬁ@ﬂpg}wﬁ%tﬁlmses from
the data of Exercise 8, Chapter ITI,

17, Determire the location of ome ‘or more modal prices of Chieago
Monthly Top Beaf Catile prices from the data of Chapfer ITIL

It is possible to Iocatesthe mode within a elass by a process
of interpolation similar 16 ﬁat described in the determination of
the median but by fﬁl\\the easiest method is to construct the
smooth frequency ,c,a,tjve and determine the abscissa or deviation
of the greatest obdinate.

When the/Aita seems to have more than one mode care must
be exercls in deciding whether to smooth out the apparent
modes. In*a frequency distribution of monthly temperatures
it is ewdent that there are summer and winter modal tempera-

tutés™ The telephone calls data of Exercise 18, this Chapter,
s&s more than one mode. On the other hand, the data of age
distribution reported by the United States Census Bureau shows
a tendency for the frequencies at the even ages to be larger than
at the odd ages. This latter tendency is partly due to the fact that
persons whe are uneertain as to their exact age seem to show a
preference for an even number. These apparent modes should
be smoothed out. Data with essentially one mode is said to be
unimodal ; with more than one mode, multimodal.
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Exerciges

18. 8mooth the following data of the telephane calls for ome day at
8 business exchange and locate the modes. :

Time 67 7-8 89 910 10-11 11-1ZNen 2.1 1.2 2.3
Calls 1595 3430 6389 6904 7282 7358 6361 5659 6186
Time 34 4.5 56 67  7-8 89 9-10  10-11. INJ2
Calls 6597 6510 6093 4508 4210 2289 1107 916, \314
19. Do the same for the following residence ealls, ¢\

Time 67 7-8 89 510 1011 1112Nenl2l (P27 23
Calls 1256 3796 6604 4098 4240 3816 58352\ 4491 3136
Time 34 45 56 67 78 89 910 1091) 1112

Calls 4344 3268 4541 4778 4030 2088 1176'\§665 187

Statistical Properties of the Mode. Sittee the modal elass or
deviation is that of greatest frequency,/Bhat is, since more vari-
ates belong to that class than to an){’tb}iér within its immediate
vieinity, the mode is the most typicalof the variates of a distribu-
tion. If any %‘Aygmiﬁaﬁ@ﬁegﬁe&ected as desecriptive of the
data the modal variate shouldbe that variate. The mode is ac-
cordingly said to define tﬁé't'ype of the distribution. The sig-
aifieance of the mode ag/atype depends, of course, on the relative
breponderance of itgfrequency. Thus the frequency of height
68 in the student'\@ai'ght distribution of Chapter III is 126 and
the total frequenigy of the classes near the modal class 13 2 large
pereentage.qﬁ‘tﬁe total of all the frequencies. In the Chicago
Monthly Bop'Beef Cattle prices of Chapter ITI the modal price
clasy &?6.00-%.49 has a frequency of 47 and the deeline in fre-
quencies on e¢ither side of this class is not as rapid as is shown
iqj@he height data. Data showing a strong tendency to concen-

o"s\'t.y:\ate about the mode is said to be Righly stable or true lo fype.
‘Measures of trueness to type are discussed in the following chap-
ter,

The position of the mode may depend only on the values of
a few variates so that the mode, like the median, gives little in-

- formation of the extremes of the range.

The mode cannot he acceurately determined by an eclementary
process of arithmetic as can the median and the mean.
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The mode being the predominating value, the type, the fash-
ion, is what is ordinarily in the popular mind when an aver-
age is spoken of. The staternent that the average person spends
one-third of his ineome in rent is most likely to mean that more
persons spend about that percentage than any other percentage.

Consistency of Averages. The arithmetic mean, the geos

metric mean, the median, and the mode for the student hejght
data of page 26 are all close together in value—67.90, 6786,
67.06, and 68. respectively. Thus, close agreement is an(ihdica-
tion that the data is not erratie and hence is stable, lgel}fgble and
truly representative or typical of the population frofhwhich it is
a sample. ,"‘.,\\

It is easy to set down figures of a distribiion which may
show a wide divergenee in the averapges butgxéiieh divergences do
not ordinarily arise in actual data unles$\the data has eomplex
tendencies. It accordingly appua‘frswf%%;%éﬂ%vg‘ayljggg iQl“fﬂrences
among the averages always call‘%ox,’g eritical examination of the
data for the causes of such différences.

It will usually be found thigt where the data shows a distinct
mode that the median and.arithmetic mean will be in elose agree-
ment with the mode. Y.Kﬁere the frequencies are comparatively
high near the ends ti\éhe distribution there may be distinet dif-
ferences among these®three averages. Later methods will give
exact mathematicaVindices of the forms of distributions but the
fact must not b}a\overlooked that the study of these averages gives
very important information on the form of a distribution.

N\
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CHAPTER V
THE FORM OF A DISTRIBUTION

Dispersion. Tt is stated in the preceding Chapter that the
significance of the mode as 3 representative of the data depends
on the extent to which the data conforms to the mode as a type.
That is, if the sum of the frequencies near the mode is a rela-
tively large percentage of the total frequency the modal devia-
tion is highly typical and the data is not subject to great\yaria-
tions. The word variation is used because if a eertain tﬁ’pe does
not predominate in the data different samples will bave a tend-
ency to show widely differing, that is, varying d:isﬁ:ibutions. To
illustrate, if the modal frequeney in another ganmple of 750 stu-
dent heights is only 95 instead of the 128 for the data already
studied with a similar reduction in the other’la'rger frequencies
and with consequent larger frequencigs.farther from the mode,
then this second distribution will not\vé so true to the type ¢x-
Pressed by the mode as in the firgt: ifl'iétribution.

To repeata ‘di@ﬁ‘éﬂﬁﬁ%‘?ﬁﬁ"hﬁ‘éﬂn&ﬂ frequencies at the ends
of the ranges and with the\frequencies eoucentrated ahout a

point is said to be frue todyPe, to be highly stable. Some of the

methods of measuring ,the extent to which the data is scattered

or spread or dispersed ahout the class of concentration are now to
be considered, \ "/

Measures ©f Dispersion. Because the breadih of the range
depends omtie usually uncertain data at the extremes it does not
furnish areliable measure of the extent to which the data is
disp rsed.” As given in Chapter I1I the range of student heights
is 1d'mtches, from 61 to 74 inches, so that the inclusion of a single

student of height 58 inches would increase this range by more
~(than twenty per cent,

4 We have seen that in theory the dispersion should be meas-
ured from the mode but in practical statistical work the mean,
median, and mode usually differ so little in position that it is
ordinarily permissible to measure the dispersion from the mean.

As was shown in the preceding chapter the arithmetic mean is
most eonvenient from the mathematical standpoint.

(48)
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The sum of the deviations abou? the mean i3 useless as a
medsnure of dispersion because, az was proved in Chapter IV,
this sum ig zero regardless of the spread or dispersion of the
distribution.

Mean Deviation, Since the object in measuring dispersion
is to determine the deviation of the variates from an average it
is the numerical amount of a deviation that counts and not itg
direction. IHence a logical measure of dispersion is obtained by
adding the deviatioms, all counted positive, and then divid‘i‘ng'
this sum by the total frequency. This gives the mean c%e*wztwn

The form for the computation of the mean deviafion is the
same as for the arithmetic mean except that all\megative signs
are disregarded. !

The following is the computation of the mean deviation from
the arithmetic mean of the Student Height“Dé.ta.

The arithmetic mean has already been computed at 67.9

inches. wwx’-.f'.'d raulibrary.org.in
Computation of the Mean
Student Héight Data
Class No. Diff . ~ Preq. Prod.
1 6,95 2 13.8
2 \3.9’ 10 59.0
3 4.9 11 53.9
4 L@ 89 38 1482
5 O 2.9 57 165.3
NG 1.9 93 1767
R 0.9 106 95.4
N8 0.1 126 12.6
LN o 11 109 119.9
~ 2.1 87 182.7
11 31 75 232.5
12 41 23 94.3
13 5.1 9 45.9
14 6.1 4 24.4
750 1,424.6

On dividing 1424.6 by the total frequency we have 1.9,

Q"



50 INTRODUCTION TO MATHEMATICAL STATISTICS

The mean deviation is accordingly 1.9 classes. Since each
class interval is one inch the mean deviation from the arithmetic
mean is 1.9 inches. This result shows that the average lenglh of
the variations from the arithmetiec mean is 1.9 inches in this
illostrative data.

For purposes of eomparing the stability of different distribm.
tions it is desirable to divide the mean deviation by the mear™or
~median, whickever is used as a base. When this is done't}\ié‘n\] ean
deviation is expressed as a fraction of the base average. For
instance, it seems reasonable to gay that a mean dgﬁix’ﬁon of 0.3
with an arithmetic mean of 20 has the same signifigaﬁce as a niean
deviation of 0.9 based on an arithmetic mean. of.B0.

Because, as is presently preved, the n deviation is least
when taken about the median there is g theoretical advantage in
computing the mean deviation about’the’median, When so done

there is a eerwﬁlmﬂ,ﬁnﬂgg}{zation which is not attained
with any other average as a base but the point is not of great

practieal importance unlegs the ‘median and the arithmetic mean
differ markedly. Y : '
Proof that the Me&in "Deviation Is Smallest When Taken About
the Median, Let P b é\pdint on the line 8—1T between the points A and B.
The som of the deviations of P from A ang B is, without regard to the siga
of the ‘deviationsy FRI-PA, and this sum ig equal to AB. If P should lic
without tho seSmant AB, a3 P, the sum of tho two deviations would be
greater thaxn :}&B Likewiso the sum of the distances of P from any other
two POil{igG aed D is least when P lies botween them. Ifenee the total
spm Df\iﬂ iations of P from any number of poinis is least whon there are
a8 Mapry points om one side of P ay on the ‘sthar; that is, when P is the
mmsﬂiaﬁl of the pointa, .
\ )
A ¢ =

P B D 1 p
-4 ¢ 2P Dy rop
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Exercises

1, According to tho measare supplied by the mean deviation which is
the more variable, the monthly mean temperature or the monthly mean
preeipitation at Columbus, based on data given in a previous Chapter?

2. From the data of student heights and student weights of Chap-
ter YII determine which is the more variable as meusured by the mean de-
viation, O

Statistical Properties of the Mean Deviation. The mean d-
viation as a measure of dispersion has much to be said for it—
it takes all the variates into account; it takes each Var}até ascord-
ing to its size and hence, as the arithmetlc mean, Ii{asy be unduly
influenced by extreme variafes.

The mean deviation i an index of djaPars10n of practical
importance and frequently gives a sufﬁelgnt measure of disper-
sion, though for many, if not most, parposes the mean squared
deviation to be presently dise.wgge@sligr?ﬁdﬂ@mvegimt.

The Mean Squared Deviaﬁpﬁ',"’ The mathematically simplest
device for eliminating neﬂatii’é signg is that of squaring the
terms. If the difference }.Kctween each deviation and the mean be
squared, the sum of, flie)squares added, and the resulting sum
divided by the total }'requencv the mean squared deviation, thus
obtained, is a measgure of dispersion which is arithmetically more
convenient thap IS the mean deviation.

The computation of the mean squared deviation differs from

the eom‘r@éﬂon of the mean deviation only in that the deviations
from sthe mean are squared before multiplication by the fre-
quenhcq It is, of course, possible to compute directly from the
mfa without nsing the frequency table but ordinarily only a
slight error is introduced by combining the actual values into
reagonably narrow classes and much labor may be saved becanse
only one multiplication is then required for each elass instead of
one for each individual variate.
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Computation of Mean Squared Deviation from the Mean
Student Height Data

Class Diff. Squares Frequency  Products
1 6.9 47.61 2 95.22
2 5.9 34.81 10 348.10
3 4.9 24.01 11 264.11
4 3.9 15.21 38 57T HEN
5 9.9 841 57 47937
B 19 3.61 93 33‘5 73
7 0.9 81 106\ .785.86
8 0.1 01 126 3126
9 11 121 109.8° 131.89

10 2.1 441 R 483,67
11 31 9.61 5 720.75
12 41 16.81 \ 23 5386.63
. S

R N 750 4,193.50

On dividing the. §nm of products by the total frequency we
have a mean squé}re&*deviation of 5.59 classes.

&

N

Exercises
3. De{ermme the mean squared deviation about the arithmetic mean
of stude%Welghta from the data ¢f Exercise 8, Chapter TIL

etermine the mean squared deviation about the arithmetic meun
o:f,\\&@}ea.go Monthly Top Beef Cattle prices of Chapter IIT

8. Determine the mean squared deviation about the arithmetie mean

N ,{:rf menthly preeipitation at Columbus from the data of Chapter L.

6. Determine the mean squared deviation of monthly temperatures
at Columbus from the data of Exercise 1, Chapter 1.

' The abov?' method of ecomputing the mean squared deviation
u.lvolvea fractional deviations. By the following short rule frac-
tions ean be avoided in the eomputation.

Short Rule for the Mean Squared Deviation. Under the
shoz:t 1.'ule for eomputing the mean squared deviation an integral
deviation near the actual arithmetic mean is selected and the
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differences between each deviation and this selested point are
computed. Then each of the differences are squared and mul-
tiplied by the correspending freguencies, The sum of these
preoducts is divided by the total frequency whieh resuit gives the
mean squared deviation from the selected point. The mean
squared deviation is obfained from the arithmetic mean and from
the value just computed by subtracting from this computed valug
- the square of the difference between the troe arithmetic mean and
the sclected infegral point. The proof of this latter relatichsHip
is as follows: Let the mean squared deviation about theMsctual
arithmetic mean be denoted by the square of the Gljéélf"letter e -
(sigma), and the mean squared deviation about agy-Uther point
by the square of the same symbol written witli & prime, o/, We
then have, on recalling that the letter d isised to denote the
deviation of the arithmetic mean from ﬂQ’ ;Q\'igin, the following
formula: \S
e .__-ww_d,b@éql'ibrary_org,jn
To prove this formula let;ﬂfié deviations from the selected
point be denoted by X withuB%ubscript for cach class and the
deviations from the arithmiedic mean by 2 and let the distanee of
the mean from the setI&ted origin be denoted by d. Then
X == z+d for each Mmdividual or class in the distribution.

The standapdNdeviation i obtained by squaring the X for
each class, add;iz\lg, and dividing by the total frequency. Per-
forming thes¢ operations we have

N
{ '\:’ :' -] 2 ]
\”\}~ X, =z, +2dr, +d

Xi=2af+ 2, + d*

ISl

and on adding we have
3X? =3z 2d Xx - 3d%

But Zx = g0, by the theorem of Chapter IV which states that
the sum of the variations from the arithmetic mean is zZere.
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Algo 3X2=No?

and 3g® = Ng*

and 32d® = Nd2

Hence, we have,
N2 =Ng* -+ Nd* |

or, o*=¢+d".

By transposition, P
e?=o't —dt. ¢ \ \

\
To apply the foregoing short method for computmo' the

Standard Deviation let us take in the Student H‘ew‘ht Data a
selected origin at class 68. The mean squared dewatwn ig then
obtained hy the following eomputation.

N\

AY;
Computation of Mean Squared Deviati ﬁ;‘.’by Shortened Method
Student Height‘Data
www.dbra uljbrﬁ?%ovg:m’

Class Dew, 8 qwi:e;!* S Freq. Prod,

1 7 48N 2 o8
g 6 % 336’ 10 360
3 5 . V9 11 275
4 4 <\ 18 38 608
5 Y 9 57 513
6 X 4 93 372
TN 1 1 106 106
82 0 0 126 0

N
RO 1 1 109 109
SO0 2 4 87 348
AV 11 3 9 75 675
RQOEE 4 16 23 368
A\ 13 5 25 9 225
~O 14 8 36 4 144
N : 750 4,201
The mean squared deviation from clase 8, that is, 68, is

201 560,
750

Sinee the arithmetic mean is 67.9, d =68 67.9 — 0.1 and @ = 0.01,
Therefore ¢* — 5,60 _ 0, 01 = 5.59
and ¢ ‘— 2.34.
The mean squared deviation here computed

, 5.39, agrees with the same
value compnted on a preceding page, :
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Exercise
7. Recompute the meun squared deviation about the arithmetic mean
of Exereises 3, 4, §, 6 using the shortened method

Mean Squared Deviation Least About the mean. The mean
squared deviation is least when taken about the arithmetic mean.
This fact of the minimum valae follows at once from the formuld ™

N
o= g+ dt . O\

Thus taking the standard deviation about a peint, pumerie-
ally distant from the arithmetie mean by ¢ inereases~ihe mean
squared deviation by d* \\

Variance -and Standard Deviation. It has Sust been seen
that the mean squared deviation about anyypeint other than the
mean is equal to the mean squared deviation’about the mean plus
the square of the distance of such ;point from the mean and
hence the mean squared dcviﬁ'ﬂ‘i’d‘iﬁs‘%"ﬁéﬂk‘ﬂr ¥hehrga®en from the
mean, There is accordingly a)peculisr fitness in the mean
squared deviation abouat the‘)'r:iézin as a measure of dispersion of
the data, The term varignee is used to denote the mean squared
deviation about the meepa. In this {erminology the standard
deviation 18 the sq-n.&(;g:%‘“oot of the variance.

This minimufiycharacteristic gives a practical and theoretical’
preference tohe standard deviation over that of any other mean
squarcd degigtion. For this reason, and because certain other
computafions are rendered simpler by so doing, the mean squared
deviatioh about any other value than the arithmetic mean is sel-
dqn&f ¢bmpuied even though the idea of trueness of type centers
”a};)mit. the mode. Sinee the mean and the mode rarely differ by

\nore than a small amount the square of this difference will be
relatively still smaller and as a result, the difference between the
square of the standard deviation and the mean squared deviation
about the mode is ordinarily negligible.

Properties of the Standard Deviation. Since a small value
for the standard deviation can arise only when the variates are
closely concentrated about the mesn or mode and since a large
value must be due to a relatively high frequency of the variates
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near the extremes of the distribution, the standard deviation is
a measure of the dispersion of the data. Because the cffect of
squaring is to diminish the importance of the smaller values and
to exaggerate the importance of the larger values a small value
for the standard deviation shows conelusively that the data is
highly true to type and stable, while, on the other hand, a largd ™\
“value may to some extent be due to the presence of the lapges
frequencies ol the extreme variates and hence not altogfe}fli\a:z'
significant. But even with this qualification in regard, to”large
frequencies near the limits of the range the standard.@etiation is
¢ most practicable and reliable index of the dispdr$ion of data.

Exercises \

8. Discuss the comparative variabilities .6'f~\tohe distributions for
whieh the standard deviations have been compﬁ@d in the preceding exer-
eizses of this Chapter, O\

8. Does a whandadtirdetibtisayodr@dofor height of students denote a
smaller variation than a standard devigtion of 15 pounds of weight?

The Coefficient of Variability. As in the cuse of the mean
deviation the significance 6% a value for the standard deviation
depends on the size of tﬁe\variates. A variation of 10 feet in a

measurement of five Tailes is of the same degree of accuracy as a
variation of 2 feet(ih one mile.

It is, therafgre, reasonable to divide the standard deviation
by the mean/inorder to express it as a fraetion of the size of the
t_rariates: (This quotient ig ordinarily quite small, so that it is
usua{ 6 multiply it by 100. The resulting eoefficient—100 fimes
- thestandard deviation divided by the mean — s ealled the

cs{e cient of variability.

For the Student Height Data the coefficient of variahility is
accordingly :

2.36

879 X 100 = 3.48

Exercises
10. Compare the value of the ¢
that for weight for students as sho

_ 11. Diseuss the comparative
monthly temperatures at Columbns

oefficient of variability for height with
wh by the data of a preceding Chapter,
variability of monthly preeipitation and
from the data of Chapter I
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The Quartiles as Measures of Dispersion. The distance
from the median to the third quartile is the interval that includes
half the frequencies to the right of the median. Now if these
distances are relatively large it must mean that the frequencies
at the center are not large in comparison with the total frequency.
That is, if the first and the third quartiles are close together
the distribution must be closely concentrated about the median’
must be highly typical ; must show a low degree of variabilitys,
becanse in every cage one-half the total frequency is inqlude(‘i
between these two quartiles. If the interval is D&RIE{‘)“; the
ordinates near the mean must be tall, that is, the fgegﬁenbies in
the center must be predominantly large, in order ,‘co}il\nclude half
the total frequency. If the data has a flat fréguéney curve s0
that the degree of variability is large and :tl%ftmeness to type
small the two quartiles will be comparatively Tar apart.

Ordinarily the distance betwee f:hei‘_ rst quartile and the
median is approximately equal to il o fhstanoe 110m the median
to the third quartile so that the.di@tzince from the median to the
third guartile is taken as the ifidex of dispersion of the distribu-
tion. This distance is called the probable deviation.

Since half the tot-s.]{in%mber of frequencies are included be-
tween the two quari;ﬁés\the chances are even that an individual
of the group, seleptdd at random, will have a deviatien lying
between the quaf,ﬁfe deviations. In other words, the chances are
even that @I(:i}laividual selected at random from the group will
have a dbwiation mumerically less than the probable deviation.
If in owe group of 750 students, for instance, it is an even bet
tha.fn'si’sfudent solected at random has a height between 64 and 7 2
%Tzhés and in a second group the range for even chances is from
67 to 69, the second group with the narrow range between the
two quartiles s said to be the more irue to type.

Formula for the Probable Deviation. The probable devia-
tion can always be found by the simple process of locating the
guartiles. Tt is proved in the follo wing chapter that for a certain
gpecial, though very frequently oceurring, form of distribution
the probable deviation is equal to the standard deviation multi-
plied by a constant, 0.6745,
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In symbols, we have P.E. = 0.674) @, where the synibol P.E.,
inherited from the theory of errors developed hy Gauss, denotes
the probable deviation. From the Studeut Tleiglt Data the prob-
able deviation is 0.6745 X 2.36 which equals 1H0. This value for
the probahle error means that the chances are even that a student
selected from this group at randem wili have a height betwe
67.9-—159 and 67.9 + 1.59 or 66.3} and 6949 Inches. Tins
result is usnally written 67.9 % 1.59. Oy

If the distribution is markedly unsymmetrical {he" above

© formula may not hold aceurately and there are syufmietrival dis-
tributions for which it does not hold exactly. .Bi'rl axtreine ac-
curacy in the matter of an index of dispersion}is not necessary

or desirable. The formula is generally \{scd regardiess of the
form of the distribution. \*\ .

Variance vs, Probable Deviatioms VThe term variance, which
has been defingd,as dbeanisamusgugged deviation about the mean, is
more convenient in many forms\o¥ statistical work than the prob-
able deviation. In using t;hé;’Variance theory it is not neccssary
either to extract the square Toot of the mean squaved deviation or
to multiply the squarg\root by the fraction 0.6745. Tt wust be
fwident that com ¥ative variances tell essentially the same story
n regard to dispersion as do the comparative probable errors.
About the only. ‘added information obtained from the probable

ST is theldefining of a range within which half the frequencies
lie. TtJd@pparent that this idea is closely related to the median
idea.\ \"

__.\\Standard Deviation of the Arithmetic Mean. The arith-
2\ }}fetm mean in the Student Height data has been computed pre-
\/ viously at 67.9 inches, The mean height of a second group of 750
students from the same student population would most likely not
differ greatly from 67.9 but it is not at all likely that it would be
exaetly the same as that of the first group. Let group after
group be taken and the value of the mean computed for each
group. 'Ijhe values of these means would themselves form a fre-
auency distribution from which a mean and standard deviation
could be obtained.

Now if the student data is highly typical and stable the
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variation in the snecessive means will be within a small range and
hence ihe standard deviation of the means will be relatively
small, Lt us assume the value which we have obtained by actual
observation, namely 67.9, is the best estimate of the true mean
of the height of all such students; that is, that the deviation of
greatest frequency in ihe frequency distribution of means is 7.9,
Then the standard deviation in this distribution will be the stapd-
ard deviation of the mean. It can be proved that the stanflgr
devialion of the meun 15 oblained from the standard deviglion of
the varigfes by dividing thet standard deviation by, ﬁw square

7

root of tlie number of wndividuals or frequencies, \§

In a formula, the standard deviation of tQQ nean is

4

1 €
and the variance of the mean is — o? \
j\l" 4 »,
.b ag ibr rary.grg.in
Likewise the .1, of the me-&m IS 4.6745 v

The standard deviation®df the arithmetic mean gives a meas-
ure of the reliability or ;ﬂg}mﬁcanee of the arithmetic mean. It
shows that the Iarger\’bhb number of frequencies the more we
ean rely upon the computed arithmetic mean because the variabil-
ity of the means @y measured by the standard deviation is de-
creased as ¥ bﬁé@fnes lurger, It shows also that the reliability of
the arithmefin mogn is increased as the square root of the nuin-
ber of ingit iduals, frequencies, or observations increases. That
is, the d.l'lthllll':‘tli_, mean for a distribution of 75,006 students from
th@ﬁﬁme student population, as has been previounsly nsed, which is
lb(l times the frequency of the data already stated would be only
ten times us accurate. Likewise, a frequency ten times as large
would inerease the aceuracy only by the square root of tep which
is somewhat more than three times. Multiplying the total rum-
ber of variates by 1,000 inereases the acenracy only slightly more
than thirty times.

This fact, which has just been stated; namely, that inereas-
ing the number of observations increases the accuracy only by
the square root of that number, has great practical significance.
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It tends to show that after a reasonable number of vbservations
have been made, or frequencies have been obtained, additional
observations become of decreasing iwportance. In other words,
it i3 logical to be content with data of rensonable volume.

Standard Deviation of the Standard Deviation. The stand-
ard deviation of the standard deviation may be explained by &
process of reasoning similar to that for the standard deviation of

the mean. The formula for this standard deviation sy

—t

Standard deviation of the standard devial im1~i§w‘ ——

S EN
i &

The P.E. of standard deviation is 0.6745 — ==
Rl

1t appears \f{x_'gg%a%%l_g]r?g&dggg" formula that the standard
deviation of the standard devlatii)n is equal to the standard devia-
tion of the arithmetic mean divided by the square root of 2, which
makes the standard deviation about 0.7 as variable as the
arithmetic mean. Singe‘the standard deviation has small varia-
bility, a differen {in’standard deviations is more likely to be
significant than\the same difference for the arithmetic means.
It should be pparent from these general comments on the stand-
ard deviqx{'ozz that the standard deviotion deserves the important
place whieh it occupies in statistical methods.
O -

Y13 Comp

. € nte the standard deviation of the standard deviation of the
student heights of a preceding Chapter, '

Exercises

13. Compute the standard deviation of the standard devistion of the
stndent weights of a preceding Chapter,

) The Deciles as Measures of Dispersion. The position of the
‘z‘;:eﬂes shows the spread of the variates in the distribution. If
& deciles near the middle of the distribution are close together

:n% t}fe d{fcilefs rear the ends of the range are far apart the dis-
ribution is highly stable and true to type. Because there are

nine deeile positions to observe in a distribution the decile is not
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as simple a measure of dispersion as is the quartile or standard
deviation, though this very fact of greater detail may in some
cases be of advantage.

Exercise

14, TUsing the results of Exercise 14 of Chapler 4 examine the varia-
bility of the Chicago Monthly Top Beef Cattle prices as shown by deeiless

Symmetrical and Asymmetrical Distributions. The{cnrve
of students heights is essentially of the same shape to @hé‘tﬁght of
the highest point as it is to the left. Itisa symmetrital enrve.
Statistically the faet of symmeti‘y nieang in this élase that there
is no tendency for students to be either tall qr ghoit ; that there is
no selection hetween the tall and short; Qa‘t the chances for a
tall person to belong to the student group are equally as good as
those of a short person; that there)i§)absolutely no comnection

between being a member of this 51;1idént group and being tall or
being short. \»g}?f:\u',dbrauljbrary.org.in

*

A Frg. IT. A Symmetrical Curve,

vy

< On the other hand, the curve of height of the members of a°
police foree would have a longer range to the right than to the
left because extremely short persons are exclnded. The curve in
this cage is said to be asymmetrical. Asymmetry in a curve de-
notes the presence of sclection in the data; of a dependence; of an
expressed preference for certain values of the attribute.

The Position of the Averages and Asymmetry. In a sym-
metrical enrve the mean, median and mode -coineide. In an
asymmetrical curve the mean, median and mode do not coincide.
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The cutting off of the range to the left tends to move the mean to
the right beeause the longer deviations are to the right, and it
has been seen that the mean is most affected by the longer or

Fia. TIT, Ar Asymmetrieal OF:ZS(R\?;\' (urve.
R&
extreme deviation. This places the.wedian to the left of the
mean. The mode ik dnpdite dig moved to the left of the me-
dian because hoth the effect, of the moving of the mean to the
right and of the shortening of the left range with a consequent
heaping up of the freqpené’ies within the left half. "The result
is that the three avergges are then in the order—mode, median,
-mean. It has bee{ﬁre’riﬁed experimentally that for moderately
asymmetrical d}s@m utions the distance of the median from the
mode is abm}i( one-third the distance of the mean from the mode.

Skew'ﬁegs. An asymmetrical curve is said to be shew. Skew-
| ness 18 posvtvve when the longer range is to the right and negative
- whehthe longer range is to the left.

4 .\‘ 3 .
~\J Measures of Skewness. Since the mode and mean are sepa-

N ‘rated' to an extent depending on the degree of skewness present,

. @ logical measure of skewness ig the difference between the mean

aud the mode. Because a large difference between the positions

of the mean and the mode in widely spread-out data may not be

fis.mgmf:mant as & smaller difference in highly concentrated data

1 1s advisable to divide this difference by the standard deviation.

Hence we have,
Mean — Mode

o

Skewness =
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A Second Measure of Skewness is obtained as follows. Any
measure of skewness must take into account the distinetion be-
tween positive and negative deviations. The total sum of devia-
tions from the mean is zero regardless of the form of the distribu-
tion. The standard deviation involves the deviations as squares
and hence obliterates the distinetion between positive and nega-
tive deviations. The mean cubed deviation, however, will servo'
as & measare of skewness, The longer deviations to the right. 1‘*&"
the skewness is positive, will be more powerfully affected 4y the
operation of cubing than will the shorter deviations 0 the left
and hence the total sum of cubed deviations will be letlve It
is well to extract the cube root of the mean cubed deviation and
then in order to express the skewness as a fraction of the spread
of the distribution fo divide the result by théstandard deviation.
Further disenission of the subject of skw‘dﬁ%\‘; is deferred to the
Chapter on Moments.

Exefﬁgegdbrauljbrary org.in

15, Using the sccond measure of skowness eompute the skewness of

the student height data already gnen \

16. Using the second moeg@ure of skewngss compute the skewness of
the student weight data ah‘e{;u]?\ fiven,



CHAPTER VI
THE NORMAL PROBABILITY CURVE

The Equation of a Frequency Curve. As discussed in
Chapter II, a smoothed curve is a graphic estimate of what-would
be the course of the data if it could be freed from qn;-\cigental
variations. The smoothed curve is therefore the geompiive rep-

resentalion of a law of connection or varialion. Jt shows, for

O

4

instance, the variation of temperature with the SeifS()'l‘iH; the tend-
eucy for precipitation to depend on the mon},}}\‘nf the vear; the
most likely percentage of students at each dajwht.

The presence of an underlying Ia\xvxu£\6011110r-.1 ion in the data
implies the presence of an algebraic law eonnecting the » and the
y coordinates. The algebraic stafemént of the law giving the

most probable widbeawifogniy. degrss of x is called the equation of
the curve.

If the equation is given, the ordinate can be computed for
any abscissa and hencesthe curve can be located by plotting a
sufficient number of eomiputed points.

In some distwibitions it is possible to discover a law of con-
nection directlj\from the data, and then without an extended
computation o translate this law into the proper algcbraic form.
We ahaﬂ.cﬁsr’:uss in this chapter the equation of one type of curve
—the nofmal probability curve. This form of curve is suited to
the xépresentation of a large elass of distributions. And the
theory of the normal probability curve can be made use of in the
}ieten‘?nination of ‘the standard and probable deviations and in
the disenssion of certain other properties even for a distribution

to which it does not apply with sufficient accuracy to be adopted
a3 the form of the smoothed curve,

. Statistical Significance of the Normal Curve. The frequen-
¢1es in data d.emgnated by a normal probability eurve are merely
the frequencies which result from the accidental variations in

random sampling, They are the aceidental variations which come

(64)
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purely from chance. For illustration of & normal probability
eurve assume ihat ten coins are placed in a cup and thoroughly
shaken and then thrown so as to show heads or tails and a record
made of the results, Out of 100 such throws, 5 heads and 5 tails
will probably oceur the greatest number of times, Six heads,
four tails will oceur not quite as many times. The probability,
will be still less for the oecurrence of 3 heads and 7 tails and ‘&P
on for the possible combinations. If a curve were plotted stk =
representing each number of heads and y the number of ‘times
each number of heads may occur it would be found-that with
« =5, y would probably be the highest. Forz= & and z =6 the
y’s would he closely equal but somewhat shorterdhan the greatest
value for y and so on for each value of . \

In this tossing of eoins it is evidentl’phht in general there
is no eausal connection between the wimhber of times a coin is
thrown and the proportion of heads’.:'f[n fact, a distribution of
the type just considered results "WHE Phe idivies mre merely
the result of chance. &Y '

The foregoing may besrestated as follows: In a freguency
distribution where ther Lpno cousel connection each frequency
is the algebraic swm Qf an indefinitely great number of small
elemental a-ccideng!(?l\\mﬂuences which are all equal and each of
which is as likelyJto be positive as negative. This statement is
not only log‘,icé?l ‘but it is possible to derive the equation of the
normal probability curve from this defining statement. One
form QT\\'dérivat-ion is given in Appendix I. This equation is of
the widést nse throughout analytical statistical methods. Even
jvhere the data is not distributed normally many of the methods
{“aid formuias from the mormal probability equation can be ap-
Plied with sufficient aceuracy for practical purposes.

The Equation of the Normal Curve. The equation of the
normal probability curve is

*

o2
= N__ . e— EaRS
a2
where N is the total frequency of the distribution; o, the gtand-
ard deviation; =, the well known constant 3.14159; and ¢ is &
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constant which is taken numerieally equal to 2.71828. In thig
form of the equation z is measured from the arithmetic mean as
origin. The derivation of thig equation, as is shown in the Ap-
pendix, i3 based entirely on the foregoing statement that the
ordinates of the normal probability eurve are the resultants of
a large number of elemental influences which are in themslves
very small and which are equally likely to be positive or Degative.
It may be noted that in order to have a normal distribution it is
not at all necessary that it be possible to compute aetually the
values of the elementsl factors; it is only their éxitence under
the above assumptions that is predicated. K%

The Curve of the Normal Equation.\\0ie mathematies of
the normal probability curve, especially’the derivation of the
equation is fairly complex, but with the Welp of tables which have
been prepared the normal probability curve is actually quite
simple in its, spplisationsrer Thegdorm of the equation may be
somewhat intrieate but the gractical uses of the curve can be

readily understood without\going deeply into the higher mathe-
matics of the matter, L.

The shape of ‘thie ‘normat probability eurve follows from
general consider: t;iQ’imf Sinee the equation of this curve is derived
from the assumption that sfl the ordinates are the resultants of
4 large number et elements which are equally likely to be positive
or negative:i‘t is logical to expect this eurve to have the same
shape dndthe positive side asg on the negative side, Again, with
an ghgence of selection, it is reasomable to conmclude that the
reg:%ltmg distribution will be symmetrical with as large a distri-

~Aution to the right as to the left, And it is also apparent, that

) 'the frequencies at the center will be high and those at the ends
of the range smali,

In the normat equation,

N -
_ oV en €

Bince ¢ appears in the equ
same value for y ag does -+
that the curve ig Symmetri

y=

ation only as a square, — z gives the
. This is the algebraic way of saying
cal about the y axis,
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It is to be noted that « appears in a negative exponent. B
is a well known algebraic faet that a guantity with a negative
exponent is really a fraction, so that 4 negative exponent in the
numerator appears as a positive exponent when transferred to
the denominator. Tt st accordingly be apparent that as z be—
comes larger the denominator of this fraction bocomes larger andh, >
hence the fraction itself becomes smaller. That is, ¥ besfmes
smaller as x beeomes numerically larger, On the other ha’md no
matter how large z may be there is always, even thoggh it be
micrescopic, some value for ¢, All of this means tﬁat this sym-
metrical curve sinks both to the right and to the'\l\eft and con-
tinually approaches the axis but never actually reaches it. It
will be seen in a moment that the point'&jﬁ"the eurve beyond
some very definite Jimits are negligibless\

To re-gtate in general language, theve is always a possibility
that the elements might be so gmﬂ‘@ﬁnmﬁbpquﬂﬂg @any valog——
there is a remote possibility that'a coin tossed 100 times might
yield heads each time. Smoe,thls possihility exists there must
always be some ordinate, however small, for each value of z and
hence the curve eontinuéi]}y approaches the z axis as a limit but
never becomes actually equal fo zero.

The study of, %he normal probability eurve is faeilitated by
writing the equafidn in the following form:

O ¥
\W
\”' Y= —. z:
A\ o
N\ 1 -22
~O Where Z = e 7
QO Ver

It is to be noted that the & in the expression for Z is divided
by o so that the independent variable is made up of the various
values of g standardized by dividing by the standard deviation.
In other words, Z is a general form which can be fitted to any
normal distribution data. The value of the standard deviation,
o, determines the shape of the curve for any distribution. Where
o ig large the result of dividing each z by o will be relatively
smaller than where ¢ is small. Consequently a curve witk a
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Iarge o will be more spread out, that is, more flat than where o
is small
To snmmarize these comments on the normal probability
curve it may be said that all normal probability eurves are of the
same general shape and have the same geometric and aIgebraip
characteristics but differ from distribution to distribution by the
degree of flatness which is measured by the standard denat{on
‘Where the data is highly typical the standard devmtwn will
be small and the ordinates of the enrve will decrease more “rapidly
. 8o that the curve will be steep or relatively very, “high in the
center. The logic of a flat or steep normal cmwb can also be
supported by mathematical reasoning,
It must be apparent that if a table g'\\iﬁg the values of Z

/

&
for each ordinary value of — was at hand it would make pos-

. www.dhbr auhbral y.orgin i
sible the ready computation of Falues for y. In the following

table, which is an illustrativel ‘exeerpt from Sheppard’s ‘‘Table
for Statisticians and Bmmefrmans” values of Z are presented.

Table of Ordmates and Areas of the Normal Curve

zfe Z s\ Areas /o z Areas

0.0 0390, 0.000 1.2 0.194 0.385

0.1 0,397/ 0.040 14 0.150 0.419

0.2 .ﬂ<391 0.079 1.6 0.111 0.445

0.3 \‘e3s1 0.118 1.8 0.079 0.464

0, 4,\ " 0.368 0.155 2.0 0.054 0477
0.352 0.181 2.2 0035 0.486

N 0 8 0.333 0.226 2.4 0.023 0.492
\"\} W 0.7 0.312 0.258 2.6 0.014 0,495
0.8 0.200 0.288 2.8 0.008 0.407

0.9 0.266 0.316 3.0 0.004 0.499
L0 o242 0.841 8.2 0.002 0.409

In cﬂm_Dl_ltiIlg the ordinates, each  is measured from the
mean and divided by the standard deviation. Then the Table is

: v ® .
eutered with :‘ - Finally multiplication of the values so found

by the ratio, ¥ /o, gives the successive values for Y.



INTRODUCTION TQ MATHEMATICAL STATISTICS 69

Computation of Areas Under the Curve. In the following
illustrative computation of the normal ecurve of the distribution
of student hejghis the ordinates are computed for the boundaries
(as the fractional deviations in the first eolumn derote) instead
of the midpoints of the class intervals. This iz done, as will be
presently explained, for convenienece in finding the areas undem
the curve. In the computation scheme, the first column ig for
the deviations; the second for the deviations from the mea’n“fhe
third, the devmtmns from the mean divided by the atandard
deviation; the fourth, the values of Z obtained from" the table;
and the ﬁfth column shows the desired values of the ordinates
which are obtained by multiplying Z by N/e.. Xhe sixth, seventh
and eighth columns are explained on a folloqnng page.

Table of Z°’s and Corresponding Areas\for Student Height

@ ® (@ © (&

@ A dbrauh Car ROlidREL.  Arca

Devigtions o r % ',: Ny Areas  Areas Frequencics

05 74 320 0008 L .001 0.7 16
L5 54 277 ~001 32 008 2.3 5.3
25 —54 23200003 97 010 7.5 135
85 —44 _1\511 ) 006 195 028 210 32.3
45 34 947 014 455 071 B33 685
55 —24 (3104 023 74T 140 1118  BL5

65 . 14(; o061 o033 107% 871 2033 1215
7.5 _.4{’.4' ~017 030 1266 433 3248 126.7

7.9 L0 000 040  127.2 500  (375.0) —
8.5%40.6 +0.26 039 1266 602 4515 107.3
S5 116 4069 031 1007 745 5588 9.5
LA05 426 4133 021 682 871  653.3 52.5
)\ d15 438 4156 012 390 941 7058 27.0
NS/ 125 445 1199 008 19.5 977 7328 120
135 66 243 002 65 903 7448 3.7
145 466 4286 0.01 32 998 7485 8
N=750
r= 238
Nje= 318

_Mean: 67.9
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Exercises

1. Plot a normal eurve for the distribution of student weights aceord-
ing to the data of Chapter ITL

2. (ompare the curve obtained in Exereise 1 with the smmnooth eurve
¢f Chapter YII. How closely do they agreef

Area Under the Normal Curve. It has been scen that the™
total area under a normal curve must equal the total freque{@y
In Sheppard’s table the value of this arca for limits Qix -Are
given. 1In the Table of page 68, a few of these valuesuet given.
Tt is to be noted that this Table is so arranged that flie atea starts
from the mean and extends to the right or the leftd

In the eompuiation form for the ordinapes’of the student
heights carve the areas from Sheppard’s .'I‘Qxh‘le are set down in

colamn {6) for the values of — of celumn {3). The ordinates
www. dbraulibrar yo'org i

through the boundaries of the classes are taken to facilitate the
computation of the class areas It is t6 be noted that thesc areas
are so arranged that the area through the mean is one-half, and
it is to be noted that thé last area of the Table is not quite ore.
In column (7) the L@mﬂ&ti\re student height areas are given as
obtained by multiplying each item of column (6) by 750. In ihe
final column, (\83; the areas are subfracted or added so as to
show the freduencies in each class.

It sheuld be noted that all the values for z in the table of
Studen«thh&mhts of page 69 are at the boundaries of the student
height classes. The moan has been computed as 67.9 henee the
L middle class is 67.5 to 68.5 with 68 as the middle ordinate. This

\brmgs the eomputation in line with the frequeney distribution
at the heginning of Chapter ITI. Since areas are measured from
the left the elass one area is 1.6 or to the nearest whole number 2;
the next is 5.2 or 5, and so on down one by one.

Gl?odness of Fit. The area frequencies of eolumn {8) of the
preceding Table are re-stated in terms of whole nimbers in the

following table in order to compare the computed frequencies
with the original frequencies.
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The Adjusted Distribution of Student Heights

Computed Original Positive Negative
Cluss Frequencies Frequencies Difference Difference
1 2 2 .. .
2 5 1 .. 5
3 14 11 8 ..
4 32 a8 . i}
5 59 57 2 .
] 91 93 L 2 AN
7 122 106 16 A
8 127 126 1 . \
9 107 109 .. LN
10 93 87 8 4D
11 53 75 . N
12 27 23 4 ¢
13 12 9 3N\
$
S V- S

750 760 O\ 37
www;:d.brauﬁin‘ary.org.in

The goodness of fit of this normal curve is indicated by the
differences of the fourth and‘ﬁ'fth columns. The differences are
taken positive when the adjusted values exceed the original
frequencies. The sum of the positive and of the negative differ-
ences shows a fairlyidlose fit, though the size of the individual
differences must algo be taken into sccount in estimating the
closeness of fits, (/" :

Furthef/Gomments on Areas. It may be readily shown by
the usu .}\:méthods of determining areas under a curve that the
mathemiatics of the normal probability eurve calls for an area of
1331’5&' between the curve and the X-axis,

< The areas are from the central ordinate to the ordinate cor-

résponding to the z/0. Tt will be noted from the Z table that
when z/¢ is 3.2 practically the entire area of half of the curve
has becn ineluded, the entire half area being 0.5 and the ares
here being shown as 0.499. Tt should be noted also that the #
giving half of the area to one side is somewhat less than 0.7, 0.7
being 0.258 instead of 0.25,—it is 0.6745.
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Exercises

3. Test the closeness of fit of the mormal eurve of student weights
plotted in Exersise 1.

4. Compare the closepess of fit of the normal curves of weight and
beight.

5. The table of values of Z are multiplied by N /e to give the aetual
ordinates while the areas are multiplied by ¥. Explain this difference {an
elementary kmowledge of ealenlus is required).

Preliminary Determination of Normality. Before'attempt-
ing to fit a normal curve to a given distribution the data should
be analyzed to determine whether the fundamental dondition of
normality is present, that is, whether the data ds apparently sub-
ject only to accidental variations. The datasghpald be plotted and
the smooth curve drawn by the methods.of XChapter II. Then if
a normal distribution is indicated a norral curve should be fitted.

A mathematical measurement o€ nérmality wiil be derived in
a later chaptéi‘.""w‘d braulibrary.orgin

o\

Probable Deviation in.:afl.fl’ormal Distribution. The quar-
tiles divide the two halves'of the area into equal parts. IHence,

~ In the Z table the valug\of /o which corresponds to an area of

0.25, gives the Valug‘oi:\the probable deviation. This value of /o

- i3 there found by*ihterpolation to be equal to 0.6745. Therefore,

PPN
¥

the deviation af\the quartile is 0.6745 times the standard devia-
tion. Thiy, Jemonstrates the rule for obtaining the probable
deviation; haimely, multiplying the standard deviation by 0.6745.
Th}}.‘formulas for the probable deviation of the arithmetie
mqm\a.nd of the standard deviation referred to in the preceding
Chapter are derived on the assumption that the two are each
Jhormally distributed.
. -'_[t can be shown mathematically that even when the form of
distribution is distinetly non-normal the ordinary rules for find-

ing the probable deviations hold with an approximation close
enough for practieal purposes, and experimentation with differ-
ent forms of dist

ributions bears out the mathematical conelusions.

Exzercises

corremponding {0 the ordinate which marks
the right of the tmeant

6. What is the deviation
- off three-fourths of the aren to
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?. What part of the areu under the normal earve is ineluded between
tho mean and the ordinate with a deviation of two times the standard devia-
tiocry Thres times ihe standard deviation? Pour fimes the standard de-

viation?

The results of Exercise 7 show that the oecurrence of a
deviation of three times the standard deviation is highly impreb-
able. That is, a deviation greater than about three tirqes the
standard deviation must significantly indicate that the anessure-
ment is not that of an individual taken from the samé Material;

- that it does not helong to the same distribution budite another
distribution which has some conditions dlfferent from the first.
To iliustrate, the standard deviation of studiént heights is 2.36
inches and the mean height is 67.9 inches. Oude would, according
to this theory, be justified in concludin® that a person with a
height of 76 inches (67.9+3 X 2.36 —-‘34 98) does not belong to
the same stndent group. db

While it i not advisable to! p acerﬁ‘ﬁﬁ]flca”iye%iﬁ‘iﬂ‘enee in the
tests farnished by the theory, of \probable deviations to the extent
that the results which it ‘méheates are accepted without some
independent verification{er at lesst justification, yel when used
with judgment theycape exiremely valuable aids in practical
statistical work. TR every case it establishes cautionary limits, as,
for instance, ong ‘would not ordinarily be justified in concluding
that a variagelavith a deviation much greater than two or three
times the standard deviation belonged to the same distribution.
On the ¢thér hand, if a numper of measurements of height should
each €omsistently exeeed those of the student distribution it might
thelbe concluded with much eertainty that the individuals meas-

~Bred were taken from a population distinetly different from the
student population. And the conclusion wounld be justified even -
though the deviations were considerably less than two or threc
ti_mes the standard deviation.

Least squares. The equation of the normal probability
curve furnishes a very convenient and easy way of seeing the
reasonableness of the principle of least squores. _

According to the principle of least squares the best fitting
eurve, or the best graduation of data, is one in which the sum of
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the squares of the differences between the original data and the
graduated or fitted data, is a minimum. It must be noted that
according to this prineiple the *“‘best’” is not based on having the
sum of the differences between the observed and the adjusted
values the least possible. This principle says that the squares of
such differences must be the least possible. ~
It is obvious that one advantage of the least squares tegt of
“‘goodness of fit"’ is that since each difference is squared\n’u dis-
tinction is made between positive and negative valugs\because
the square of a negative value has a positive sign, {Ityhas been
seen that the mean deviation, where all deviatiogsCare taken as
positive, is a measure of dispersion. It mighit accordingly be
possible to add all the mean dispersions, but.oue difficulty is that,
though such a test is simple in words, mafhematically the differ-
ences themselver regardless of sign apé not readily amenable to
analysis. On the other hapd, samarey-6f differences which natu-
rally point toward the standard.deviation are much easier to
handle in computations. . \y
To give an idea in outline of how the principle of least
squares I8 true where t% data follows the normal probability
eurve let us take a mumber of points (z, ¥,) (%, ¥.) (%Ts ¥s)
’lihﬁn if the points are on the probability curve

each set of valugs of = and y must satisfy the equation. Hence
on substituting‘we have,

,~.l‘\“ 1w
\§ = ol -e--_g‘?
’,}; o\ 2n
~for each point. That is, we will have this expression with
(@0 92), (@, ), .. ... , respectively, substituted,

. The foregoing values for y, | Yy . Y ... ete. give the respec-
tive probabilities that these points lie on the normal probability
curve. Hence, the probability that all these points line on the
eurve at the same time is the probability of the oceurrence of all
these ‘phenomena and this is the product of the individual prob-
abilities. The product of the y’ is an expression with the sum

of the squares of the 2% in the numerator of the negative expo-
nent of e,
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In passing over the varions questions in regard to the con-
stants et it be noted that the exponent of ¢ involves the ex-

pression (o) +2,+a3+ ... .. ). Sinee this latter expression
oceurs in a negative exponent, which makes the expression a
fraction, the values of the fraction will be largest when the de-
nominator is smallest, which, in this instance, will oecur\when
the just stated sum of the squares of the x's is smallea§\~That
ig, the probability that all points are on the curve is g]:eatést when
the sum of the squares of the differences is a mlmnqmg

\/
O
»
D
&
a :\.l
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CHAPTER VII
THE CORRELATION TABLE

The Correlation Table. From the records of Physical
meagurements of students, of which the data at the beginning of -
Chapter III is a part, & tabulation was made of the heights of
students whose weight was from 130 to 134 pounds—a weight
class which may be denoted by the middle weight, 132 pounds>~
and the following distribution obtained

N

(\NA

Height 62 63 64 65 66 67 68 69 70 7@ 79 (T T4

Number 2 0 4 6 18 18 17 8 8 4 3.1 1
The distributions were likewise obtained for .&deh other five-

pound intervals from 102 o 187 pounds. Instéad of writing each
of these distributions separately it is more)convenient to write
them together in one table ealled, for rédsons explained later, a

correlation toble. In this way we have'the following table:
Corretation ¥ AtteYol Hltght and Weight

Hat“g;ht in Inches

(76)

616263 64 6568 67 68 69 70 71 7273 74 Tolls

187 - M. .1 3 2 2 1., o

182 > . 1 e e . 1 . 2

177 \\ e .. 1 1 ... 1 3

e | L L) 11 1 6 2 . 1
ek .. .. 1 2 6 1 21 13
$) e e .. .. B 2 3 8 2 223 . 2
S ERTIN & .. 4 1 86 7 5 7 1. . 8
& ¢ 2 2 3 14 10 12 11 . 1 1 56
8| \\iwr 2 38 7 512 9 § 3 . 49
2P 10 . -« 712 10 17 17 8 15 5 ¢ . 93
»\E 137 1 3 4 14 20 24 21 11 9 g2 . 1 110
\ B2 .2 . ¢4 918 1817 8 8 4 3 1 1 03
- 12741 11 7 7 11 015 16 18 3 5 2 . 9
128 1 4 212 17 16 14 4 5 . 1 A4

17 2210 9 6 6 7 2 s 9 48

w20 .2 v 3 3 3 ., g 20

Wl .31 5 2 1 1 . O 13

mcll ERSREE SRTUR TN S T T "

Totals 210 11 38 57 93 106 126 109 &7 75 23 9 4 750
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The writing of the distribution in this compact tabunlar form
greatly facilitates the study and comparison of the two charac-
teristies or attributces.

It is to be noted that there is a deeided inerease in weight
with an inerease in height; that there are no extremely tall per-
sons in the group who are at the same time extremely Light{in
weight ; that there are practically no persons who are both*ghort
and extremely heavy, It also appears that there is & closercon-
nection between height and weight for the shortey,,gﬁd lighter
individuals than for persons with medium valuessof the two
characteristics. ) '

Definitions and Symbeols. The properties, as height and
weight, are called the attributes or chargdiéristics.

The horizontal deviations are ¢alled the x classes or devia-
tions, and the vertical, the y classpiord denilitsons; odiach sub-class
or sub-group thus has a valae, o'z and of y associated with it.
It is convenient to number the = and y classes from left to right
and from hottom to top,pespectively, and use these numbers for
class numbers instead,of the actual class values, Thus there are
17 persons with h&i}}&ﬁ 66 inches and weight 122 pounds. In
terms of 2 and 1, ‘the sub-class (z =6, y == 5) has a frequeney of
17 the sub-cla'gf.s (m =5, y = 6) has a frequency of 7.

The ge}ﬁmns and rows are spoken of as arrays; the columns
as y C”,”Niyé of type ¢ and the rows as z-arreys of type y. Or the
Spe'?;i.ﬁ;ﬁ}mmes of the data may be given to the arrays—the weight
apray of height 67 inches; the height array of weight 132 pounds.

< _It'should be noted that the weight array of height type 67 inches
is the distribution with respect to weight of the students having
& height of 67 inches.

A y array of type » and an z array of type y ave said fo be
arrays of opposite sense. Two y arrays or two z arrays are orrays
of the same sense.

The frequency of & y array is denoted by the symbol #x
where ¢ is the type of the array. The frequency of an 2 array

]
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is denoted by the symbol n,, where ¥ is the type. The frequency
of a subclass is denoted by the symbol n,,, where z and y are
the deviations of the subclass, that is, the types of its two arrays.
Thus, #n: = 2; #au =093 near = 12, or if the simpler class num-
bers are used, n1 = 2; 2= 93; nss ~ 12, When the latter form of
class numbers is employed it is necessary to distinguish betwegn,
z and y class numbers by means of a colon. Sometimes the dis-
tinction between z and y deviations or class numbers is 1{1363 by
the use of subseripts as #y,y, . W >

2
!

Exercises ) '\{‘

1. Write the values of n,., ny, for the height: wéi;ﬂnt data.

3. Practice stating the frequencies of thevarions arrays and sub
groups; e.g. the frequency of the waight arr {o\t type 8 (68) is 126,

3. Note that m -}n..4 . . . n,“ a5 ne =83, for the height-
weight data. www dbraulibrary .org, in

4, Write other statements in tlm forrn of that of Excreise 3.

»

The mean of the vertmal column of totals is called the mean
of all the weights, and 1ngeneral the mean of the y’s, and is de-
noted by the symbol y,\It is the mean weight for all heights.

Likewise the m@m of all the z’s is denoted by the symbol z.

The means gf‘the weight arrays are denoted by the symbals,
" Fews Veay Pos- :‘:\ }
Tn genéral the mean of the y array of type x is denoted
by the\igmbd §x. The standard deviation of ail the y’s is denoted
by a,\nd of all the 2’s by o,.

Z ‘\
\"'\; 5 Ezercise
5. From the following data eonstruct the sorrelation table of Monthly
Top Hog and Top Beef (atile prites at Chieago.
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Chicago Mouthly Top Hog Prices

Year Jan. Feb. Mar. April Muay Jume July  Ang. Sept,  Oct. Nov, Dec.
1916 $8.I10 $.50 41010 $10.05 $10.35 $10.15 21023 $11.55 $11.60 $1035 $10.35 $10.80
915 740 725 05 780 795 795 RIZ 805 830 895 205 730
1914 800 AT 500 BUS  BG7 830 R0 0 973 600 BES 7S
1983 78 870 962 970 RES .00 042  $40 965 90 B30 8IS
Bz 670 657 795 820 £03 730 850 900 97 942 B3 7,8
W8I0 7S R3S G 650 672 753 793 THD 690 6.7 o 660
1910 905 1000 1020 1100 9.5 9.80 060 970 1010 9.65 80 81D
199 &£70 695 705 7.0 735 220 845 837 8460 440 &45 \s?s
1908 472 470 635 645 590 667 RI0 700 T80 700 0o 6.15
107 705 7.2 ZI0 690 &6 642 665 672 700 ro0 \g: 530
86 572 642 655 6B2 667 683 700 675 68 GBI\ 650 655
I05 560 512 555 872 55 570 617 645 620 L5805 528 533
Ibd 5.2 530 582 550 495 540 590 580 63 °/8E0 525 4%
6 7Ip 7eS B 765 S5 645 610 620 6,43,\ 550 550 490
902 685 660 655 Z50 50 RO 825 FOSNEW 792 69 630
B0l 547 565 620 6.2 603 630 640 67INEI M 410 69
00 492 510 §55 585 587 542 535 ¥EMWSI S5 5I2 500
1898 405 405 400 413 405 400 A LS00 480 490 435 445
1898 400 42 417 413 480 450 4MN\#®2 415 400 385 375
87 360 375 a4zs 425 405 3.6 gb 455 465 440 380 380
W96 445 435 435 418 475 3&"”? Tafibrasy orgetn 367 363
895 480 465 330 542 497 5,19, W0 540 465 4 385 375
Chicago Monthly-Top Beef Cattle Prices
Year Jan, Feb. Mar. A pril ij[a ¥ June July Ang. Sept. Oct. Nov. Dee.
N\
W6 085 2075 $10.07 ,$ﬁm $10.56 $1150 $1L30 $1L50 $I1.30 $11.60 $12.40 $13.00
15 970 950 915 $890 965 995 1040 1050 .50 1060 1055 1160
1914 930 975 %75 955 o 945 1000 1090 1105 1100 ILOG 1140
913 930 9\30 225 910 920 920 %25 950 975 985 1025
912 873 o, 00\ 65 900 940 960 945 1085 1100 1105 100 1L
1811 710 98 735 710 650 675 735 820 B35S 000 .35 9.3
BIG  BGNBI £ 865 §75 B85 B BSH B0 SMW  FI 5
1B 7280N705 740 245 730 250 765 BO0 RS0 910 925 9.5
108 40 625 750 74D 740 840 B25 290 785 765 B0 &M
V0PI 725 690 675 650 Fa0 750 760 735 745 DB 63
B 650 640 635 635 620 610 650 685 695 730 24 190
\{905 635 645 633 700 685 635 625 650 650 640 &75 Z0
1904 590 60 580 582 390 60 655 640 655 00 730 V68
1808 685 615 5735 580 565 515 565 G610 &I5 600 58 600
1902 775 735 740 250 270 850 BSS 900 BES  &P5 P4 TS
V01 515 GO0 625 600 610 655 640 640 660 G6H0 KI5 800
190 660 610 605 606 585 590 38 &2 &I5 60 &® 7N
189 630 625 55 S8 575 575 600 655 690 700 Lis 825
1898 550 585 580 550 556 535 565 575 685 590 625 625
7 550 540 565 550 545 530 585 580 600 540 600 568
1896 500 475 475 47 455 465 460 500 530 5§30 545 640
1895 580 3580 660 660 640 £00 600 600 600 560 S0 580
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Exercises
8 From the data of Exercise 5, construct the correlation tuble of hog
prices and months of the year, and comment on its signifieance,

7. From data obtained from a finaneinl journal eomstruct a correla.
tion table of the prices of comunon and preferred stocks.

8. In tho corrolation table of Exerciss 5 does there appear to be a
sharp tendency for the beef eattle arrays to viry with the ehanging live?
hog pricest 1Is tho tendency more prauvunced at some parts of the tabla
than at others? AN

"\

Center, The point of intersection of a horizoutdl line
through the mean of all the y’s; that is, §, and thesvertical line
through the mean of all the z’s; that is 7, is th\éenter of the
eorrelation table. \4

Frequency Surface. The frequency ci}‘r}vb has been defined
88 a curve whose ordinates are propurticm’a\l to the frequencies of
the respective clasgetbroBleramneriglim {may be applied to the cor-
relation diagram. Let an ordinatédbe erected on each square
proportional to, or equal to, the-frequency of that sub-class. On

~ the sub-class with height 68 and weight 137 the ordinate would
be 24 ; on height 71 and weight 152, the ordinate would be 11, and
80 on. A smoothed surface through the ends of these ordinates
would be the frequenfey surface for the correlation distribution.
Over any point the)height of the surface or the length of the
ordinate would\give the corresponding number of oceurrences
for the bair Of measurements of the sub-class.

Th%@ﬁt&n@e of a point above the X-Y plane is denoted by
the Z go_brdinate. On the surface a point accordingly hay three
coordintates X, Y, and Z.

'@ Tt must be apparent from the definition of correlation that
' correlated data the frequency surface has some definite shape
which in most cases may be fairly simple. For uncorrelated data
the surface is folded and crinkled without any order whatever

or if it is smoothed the resulting surface will be a plane parallel
to the X-Y plane, :

N CPnelati?n. In the table of student heights and weights
_ere 18 & decided tendency for heaviness and tallness to be asso-
@tﬁd and for lightness and shortness to be associated. There is _
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likewise a pronounced tendency for the prices of live hogs and
beef cattle to vary together. It is to be noted that the two series
of measurements do not vary fogether in every ease, that is, there
are months in which the price of hogs is low but the price of beef
cattle is high. But when all the months of an array are taken
together there iz evident a general tendeney for an increase in
beef cattle prices to be accompanied by an inerease in hog prices.
- Pwo characteristics are said to be correlated when there is a tend-
' oncy for the changes in the value of one to depend on the ckmgre}
n the value of the other. The two characteristics may mcfease
together or one may increase while the other decreases and even
in a part of the table the movement of the changes‘may be to-
gether and in another part the two series of cha.ng‘e} may move
in opposition.

1n uncorrelated dote there is no tendepcy for the distribu-
tions of the arrays to change from fype to"type.

In perfectly correlated data tiérediTaH! damet ominction be-
tween the values of the two eharacteriéhes H height and weight
were perfectly correlated, for ms”b&nce all persons of a given
height, say 68 inches, would bélthe same weight and hence all
the frequencies of the weight array of type 68 would lie within
a single sub-group. Betweén the two extremes of perfect and
of no correlatmn there ‘s\i‘e all degrees of correlation.

“J Exercises
9. SBtudy m\ﬂegreea of correlation shown by the tables constructed
in working t&mmses of this Chapter,

&«

'S

PN
\ B
\ 3



CHAPTER VIII
THE CORRELATION RATIQ

The Mean as Representative of the Array, In Chapter IV
it was stated that the modal deviation is the most frequent devia-
tion ; that is, the most typical deviation of a distribntion. Because
the mode cannot be computed by a simple and uniform process of ,
arithmetic the mean is a more practicable representative of the
array. And this substitution of the mean for the modewill
rarely produce a seriouns error. )

Since the mean of the frequencies of an array 1s taken as the
represeniative of the deviations of the array it s gppdrent, from
the definition of correlation of Chapler VII, thdt the amount or
degree of correlation in the data will be indicated by the varia-
tion in the means from array lo array. \ 0

Regressiolf "Cubvas! Py V&¥Ationvin the means of the
arrays is shown graphieally by the catye of means, which is called
a regression curve. N

\

Sines there are two sets-3f‘arrays there are two regression
curves.
_(\“Exzercises

1. From the corrélation disgram of Exercise 7 of the preceding
Chapter compnte and gompare the mean of all the top beef cattle prices and
the mean of ail the(Mog prices and find the center of the table.

Correlzaigio\ and the Regression Curves. In uncorrelated
data thg?\mean of an array does not depend on the type of the
arrays\that is, does not change from array to array, and hence
the“nrichanging value of the respective means of the arrays must
‘bejthe same as the mean of all the y’s, or at least this must be
true when the regressive curve is smoothed.

The regression curve for uncorrelaied date therefore approxi-
mates 2 straight line coinciding with the horizontal axis through
the center. For correlated data the regression curve diverges of
deviates from this position of coincidence with the axis. It must
be noted that the shape of the regression curve is theoretically

(82)
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without effect on the degree of correlation present in the data.
It is the variatiops in the distances of the means of the arrays
from the axis that connt in determining the degree of correlation
present. Hence any numerical measure of the extent of correla-
tion in the data must depend on the deviation of the means from
the horizontal axis through the center.

Sinee there are two regression enrves and two axes there @re
two correlations in each ecorrelation table and their numertcal
messures involve the deviations of the respective pégréssion
curves from the corresponding straight lines thronghithe center.
Thus the dependence of height on weight and of Weifgiiﬁ on height

,

are two distinet eorrelations. A N\,

Mean Squared Deviation of the Means" of Arrays. The
mean squared deviation is the most conVenient measure of the
deviations of the means of the arrayss/xcomputing this measure
the means 01? the arrays expressed i tlass g qxe lﬁrslir;1 computed
and written in a vertical eoluran and then the diffefénte between
each mean and the mean of &ll the variates is set down in a
columun. Because the differénces are used only in the squared
form it is not necessary A0\retain a negative sign.

The next eolum:;;ir} the computations on page 84, coniains
the squares of the differences. Since the means of the array are
used as the repreédentatives of the individuals of the respective
arrays each of these individuals is possessed of the squared devia-
tions. FHepeg-each square must be multiplied by the respective
frequeniit;ik’of the corresponding arrays. The resultant products
form the*final eclumn. The sum of this last column is the total
sumf squared deviations and this sum divided by the total fre-

~quency is the mean squared deviation of the means of the arrays.

The Correlation Rativ. The mean squared deviation just
obtained wonld be a significant measure of correlation were it
not for the fact that it does rot take into account the dispersion
of the data as a whole. Withont changing the mean and the total
frequency of even one y-array, it would be possible to spread out
each array to twice its length. This alteration would leave un-
changed the mean squared deviation of the means of the arrays
from the horizontsl axis. It is evident that the value of the mean

<
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squared deviation of the means of the arrays is of less significance
in the mora spread-out data. Hence the dispersion of the data as
a whole must be congidered in interpreting the value of the mean
squared deviation.

The dispersion of the data as a whole is given by the
standard deviation of the frequencies of the totals in the W
tical sum column, The smaller this mean squared deviation
the more significant is the deviation of the means, and the 1arger
this standard deviation the less significant is the devlatmn of the
megns. It is therefore reasonable to divide the squaxe oot of the
mean squared deviation of the means of the ar;‘a}@b; the stand-

- ard deviation ebtaine dfrom the marginal e@iunn. The quotient
is called the correlation rafio, and is denoted\\b,ﬁf the Greck letter 4.

The computation of the correlatlon ‘sa’tlo for the dependence
of student weight on helght follows firom the computation of the
mean squared dSFiatioh: %lfﬁrakﬁ’eﬁr& Y% the array.

The means and the one standard deviation were computed
in the uwsual manner. We have for the data as a whole, ¥=17.9,
and o2, =9.79, 4

2

N :
Computation of the Correlation Ratio
Student Heights and Weights

6 )] @ (3) €3] (5)
Rx 1:3’: ¥— 5 (9_37:)2 "'E'x(ﬁ-r'""""3"'-1‘)5
g D 16 2,56 5.12
1080 47 3.2 10.24 102.40
JaN 39 40 16.00 176.00
A 88 45 3.3 10.89 413.82
o “\ 57 61 18 3.24 184.68
\ 57 83 6.8 1.1 121 112.53
106 7.0 0.9 0.81 - 85.86
126 8.0 0.1 0.01 1.28
109 8.8 0.9 0.81 8829
&7 87 - 18 3.24 281,88
75 99 2.0 4.00 300.00
. 23 10.3 2.4 5.76 . 133,48
g . 108 2.9 8.41 75.69
4 105 2.6 6.76 27.04
750

1087.05
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Hence we have from the definition of the correlation ratio,

1987.05
Mean squared deviation = .— . - 2.6¢484,

750
1937.05
=0T 027082,
750 % 9.79

7 = 0.520.
Q.
Exercises A
2, Compute the value of n for the correlation of Chie.gmgé \Monthly
Top Hog priecs with Chicago Monthly Top Beef Cattle prices ‘ag shown in

~

the table of Hxereise 5 of the preceding ehapter. !

Two Values for » in Each Table. From, jke, tethod of com-
putation it is clear that there are two vahied\for the correlation
ratio, y, in each eorrelation table, one fox'esich regression curve.
The correlation ratio of weight with. hdight, for instance, may
differ considerably from the \gorre({%ﬁm}, ratio of height with
weight ; the dependence of precipita Ié‘ﬂu&nb‘?é'ﬁﬁgf‘a%‘ure may be -
of a decidedly different degree:{;fr(;m that of temperature on pre-
cipitation. The two values of % do not, ordinarily differ markedly
but there can be no apriexi assurance that they will be essentially
of equal value and hqnqé it is necessary to compute the two values
separately in caseioth are desired. To distinguish betwesn the
two measures the s}mbol 7, 18 used for the dependence of ¥ on z,
and the symlg(\il 2z Tefers to the dependence of x on y.

,»\’:.\ Exercises _
3§66mpnte the correlation ratio of height with weight and com-
pare ith the value of % in Fxercise 2.
son L Compute the value of 7 from the live stock price table of Exer-
#“\tise 5, Chapter VII, for beef eattle prices with hog prices, and compare
this value of , with that of Exereise 2. '

Limiting Values of the Correlation Ratio. In theory, the
means of the arrays le exactly in the axis for data of zero
correlation. Each separate item, therefore, in the mean squared
deviation of the means is zero and hence y is zéro for absolutely
uncorrelated data.

Beeause .cach term of the mean squared deviation of the
means is squared and henece necessarily positive any sccidental
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fluctuations of the means of the arrays in data of essentially zero
correlation increase the value of 5. Since there are no compen-
sating fluctuations, the result is that small values of 4 are likely
to be too large and hence the statistical significance of 4 for
data of a small degree of correlation is open to question. The
degree of correlation in such cases cannot be greater than the ¢
value of 4 would indicate and it may be less. It must be evident
from the nature of the error that for material showing a copsi'&eﬁ
able degree of correlation the error from this source is neghigible.

Agaixn, an inspection of the method of computing the Sorrela-
tion arrays will show that for perfectly eorrelated data this com-
putation is precisely the same as for the compulation of the
standard deviation, Henece for perfect corrqlg\t:}on

2%

Né& AN

S 3

o \N
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Exercises
B. Compare the values of »«that have been computed with the gen-

eral appesrance of eorrelation insthe tables.
6. Can a tendency be detected for the two walues of u to be closer
together in value for highly gorrelated data than for data of smaller eorre-

lation? \\ -
Probable Deviation of the Correlation Ratio. It can be
proved that the probable deviation of a correlation ratio is given

by the form}l\l'a\“
% "

#
&

(1-9%)
P E. = e
E 7 = 0.6745 v
~ ffhls probable error formula supports the previous statement
_’t’hat 7 18 increasingly reliable as its value becomes closer to unity.

™
&

Exercises
7. Compute the probable deviations of the correlations ratios of thia
Chapter,

11_1 working with correlations, especially where the total fre-
Gquencies are not large, it is always well to obtain a considerable
-l.mmber of distributions, Then if there proves to be a consistency
In the value of » greater confidence can be placed in those values
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than if there was only one distribution. Thus if ten groups of
750 students were each measured for height and weight and the
computed values for 5 should show a decided tendency to agree
in value, inereased significance eould be given to the values of 4.

Spurious Correlation. In interpreting the computed value
of any measure of correlation eare must be taken that the correla-
tion is not merely apparent and a resnlt of the naturef \o‘ﬂ the
data. The illusion of correlation may be a result of some gen-
eral change which may affect the attributes alike. @nd to an
extent which tends to obscure the more detaﬂed inter-effects
smong the attributes. The mathematical compﬁtatlons will de-
velop evidence of eorrelation but the pointJsMthat in such cases
the significance of the correlation is in qwestion.

Hog and cattle prices are affected-alike by the general levels
of prices and hence any computation” is likely to show some
degree of correlation. The questitm dbrachroasesisrdow much
dependence to place in a comp'uted measure of correlation as an
indication of what reIatlonshlp 1o expect when price levely re-
main fairly constant. o
O " Exercises
8. In whick of ‘H@ correlations of this Chapter is there a posslbﬂlty

of spurious correlation?

9. Show tHat“ir correlating index numbers especial care is neces-
sary in mterymtmg values of .

10. S}z(ﬁr that where there is aun element of spurious correlation
prosent lsl{c dorrelation is real in go far as the measurements themselves are

eoncem&}.

N
‘SN
.

O
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CHAPTER IX
THE COEFFICIENT OF CORRELATION

A Much Used Measure of Correlation. In practical statis-
tieal work a much used measure of correlation is the corrélation
coefficient. This index is nothing more nor less than the eorrela-
tion ratio where the means of the arrays lie on a, s’trmght line.
The assumption of a straight line for the ineanps ean safely be
made in much correlation analysis even thourrh,‘the means do not
lie strictly on a straight line.

Here is another instance where sqmd-theoretical accuracy
can safely be sacrificed to cbtam ﬁu advantages of better
mathematical adaptability. O\

The correlatwndbamdﬂimgya@mmple and logical basis as a
measure of correlation and should be well understood before pro-
ceeding to the study of theleorrelation coefficient. The idea of
regression curve was developed in the preceding chapter. The
regression lines are th@xbasic ideas for the correlation coefficient.

Linear Regre§s\on. A straight line fitted to the means of
the arrays is.called a line of regression. A line of regression
smooths theNCurve of regression. Whenever a curve of means
approxiniates a straight line the regression is said to be sensibly
linoais \If the regression curve, within the limits of accuracy of
the\data, is exactly a straight line the regresszon is said to be
tmfy Linear.

V" The slope of a regression line shows the broad general tend-
encies of the comnection between the attributes. Does weight
tend to increase as height increases? Does the monthly precipita-
tion increase with an increase of teraperature? If so, at about
what rate? These are questions which can be answered by observ-
ing the slopes of the regression curves. It may happen that in
some correlation tables the regression eurves deviate so widely

from straight lines that the regressxon lines have but little sig-
nificance,

(88)
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Ezercises
1. Draw by inspeetion the regression lines op the correlation table of

student heights and weights,
8. In Execrcise 1 estimate the comparative degrees of corrslation

ghown by the two regression lines.

The Equations of the Lines of Regression. Let the coordi-
nate axes be the two lines through the center determined by the \
mcans of all the variates as deseribed on page 78. Then z an\i,
are the coordinates of a point on the one regression lineand %,
and y on the other. It must be understood, however,\ that the
values of 3, and % here referred to are the ad;uste‘d ‘or fitted

means of the arrays so that unless the regressxons ake‘truly Knear
these values will differ from the values obtaimed by actual
computation. \.

It is demonstrated in Chapter XIT thaf the equation of the
| regression Iine of the means of Wﬁ%{ ey org.in

&
e =I%s .
Ry
And of the means of the z arrays,
“‘\ 0z
& =r—y,
SETE=r
where e; i3 the ramht hand marginal standard deviation and oy the
hottom margﬁ’rﬁi standard deviafion. The constant « is defined

\ ' Sy Y
by the, }gquation, o=
) Ny . oy
sxnibohc way of saying: the sum obtained by multiplying the
frequency of each subelass by its deviation from the horizental
axis and then by its deviation from the vertical axis and then ob-
taining the sum of all such produets. .
Aceording to the first of the two regression equations the
mean weight for height 71 is obtained by substituting the value
for z measured from the mean and maultiplying and dividing as
the formula directs. We found that for this data of student

The expression 337, . oy i &




90 INTRODLOUTION TO MATHEMATICAL STATISTIOS

measurements o, = 3.13 and o, = 2.36. The value of r is found
presently to be 0.50. The array is distant from the mesn 3.1

3.13

Hence, 4,, = 0.50. ——, 3.1 = 2,06 weight classes from the
2.36
mean weight.

N\

The Coefficient of Correlation. Let us now compute, the
correlation ratio using, however, in case the regression\iS-not
truly linear, not the actual means of the array but\thé means
given by the regression line. The deviation of a mf;:aﬁ from the

"
horizontal axis has just been found to be r. “f”’;\:c. The square

dx

of this quantity multiplied by the freque;u':)\\(ff the array is n,. 2%
(K

rz o, 2 o\
[ . ] . The lmggpajgigpﬁ,wpgﬁ)r’ each array and the sum
2 g

Ty 3\
of the other factors leads to thestandard deviation of all the x’s.
Hence we have, on earrying.gut the multiplications for each array

s -
and adding, r® Gyz . z&; X = 7oy’ . Nog* = Nrig,2
ne

Oy ﬂ'xs

Therefore, the\ﬁ‘léa.n squared deviation of the regression

means of the dFays is 2.0 = s2p.2 i
) S\AFTays 18 —o— = rioy’ On dividing this mean

squared @ﬁon by the square of the standard deviation of all
the yfé%vé have 7%

- = r®. That is, the constant r reveals ifself

oy

m{ﬂl‘ﬁﬁe correlation ratic when the regression means are used in-
. Btead of the true means. It is called the coefficient of correlation.

cher Definitions. The foregoing may be summarized into
certain definitions. A regression line is a line passing near each

of the points on a seatter diagram. The 7, of such a linc is the
average value for the given z.
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The regression coefficient measures the average increase of y
per unit increase of z. 1t is the & in the equation y = bz and is
Ty

equaltor. —.
Ty

It has been seen that the variance of y is o,® and the varianee
of s o2, The cross moment, 1/N . Zxy, which is r . oo 8
called covariance. O\

Computation of #. For computation purposes t-hé'\summa-
tion 2,3,%,4% can be arranged in the following w;hiiﬁner. Let
the subgroup frequencies of a given y array befeach multiplied
by the respective deviations, all deviations being’ measured from
the axis through the center, and the produets summed. Divided
by the frequency of the array this sum gives the mean j,. Hence
the summation for the array is equalMo-the product of the mean
Jx 2nd the frequency #,. On making” b uiktamtREg 4he original
summation formula becomes 2?0;{.,.' Fr. 2, of (P —F) (& —7F)
from the original axis, R

In the course of the.c“omimtation of the correlation ratio the
racans ¢, are obtained{aﬁd henee to the vomputation schedule of
page 84 only the additiona) column for the « deviation of each
array is needed, { 'Then the multiplication of the corresponding
values from hé’w,, (9,—7), and (x-——2) columns gives the
eolumn whi'gﬁ"s:ums into the quantity Zns (§,—7) (& ~—). This
sum divided by the product of the three factors N, ox and oy gives
the {'&g'l}ired value for #.

~The following table shows the computation of the coeffleient
\”8f. Corrclation for student heights and weights.



92 INTRODUCTION 10 MATIHEMATICAlL STATISTICS

The Coeflicient of Correlation for Student Heights and Weights

(@
I ﬂ‘
1 2
8 10
3 11
4 38
b5 57
] 83
7 108
8 126
9 109
10 87

11 78
12 23

13 9
14 4

A\

da{:a,i

)
Y,
9.5
4.7
3.9
4.8
8.1
6.8
7.0
8.0
8.8
9.7
8.8

10.3

10.8

106
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Computation of r

(4) (5) (6)_ mn
V,—¥ 23 n(5—7) 8 (2—2)(¥—¥)
+1.8 —6.9 -- 138 -— 2208
—3.2 5.8 — 590 4 188.80
—4.0 4.9 -— 53.9 +-215.60 O\
—-33 39 — 1482 +489.08
—18 —29 —165.3 -4-297:64)
—1.1 —1.8 —176.7 -+ Tod5¥
—0.8 -—0.9 — 95.4 ‘f‘ "85.86

401 401 4 126 N\ 4 196

+0.9 +11 +119.9 \\ +107.91
+18 421 41824 4-328.86
420 +31 +\23z 5 4-465.00
424 341 /30043 4 226.32
+2.9 +51 N\ F 459 +4+133.11
426 6V 4 244 4+ 63.44

Z?-'x (x._‘r) {Jr .._y) — 2775.05

=4 ! 9. §=1.9,
uk,"—23'6 a‘,—313
§ 750, ]
éwx (5 —3) (z— 7T 2775.05
Noy ay 750X2.36X313
=0.50
Exercises

3. \(:}r;pube r for the Chicago Monthly Top Hog and Top Beef Caitle

Compare the values of r in Exercise 3 and in the helgh‘s-\'wlght

éla.ta. with the eorresponding values for 4.

" ) 5. Does there peem to be a tendeney for 5 and r to agree more closely
\ ¢ for highly correlated data than for material of small correlation?

6. Compare the smeuunt of izhor invelved in the eomputation of %
with that involved in the computation of r.

w\ A

Statistical Properties of the Coefficient of Correlation. Un-
like the correlation ratio the coefficient of correlation expresses
a property of the correlation table as a whole and not merely of
one or the other of the two correlations of the table.

Again, unlike the correlation ratio, 2 negative sign for + has
4 significance. Tt indicates that the regression line has a negative
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slope and hence that the connection between the atiributes is
inverse; that is, one attribute increases while the other decreases.

Because both positive and negative values of r can oceur
there is no tendency, as there is in the case of 4, for small values
of + to be larger than the actual degree of correlation would war-
rant,

Because the coefficient of correlation is based on the regres-
sion lines some data may have regression curves which deyiafe so
miuch from a straight line that computed valnes for r.ha;?re little
significance. In periodic data exhibiting a sine eurve form for
the regression curve the correlation may be high Tiilt the depar-
ture of the regression from linearity is so wid® ‘the value of r
understates ihe eorrelation and hence its applicability in such
data is not of significant importanee. )"

A characteristic importance of t};éfkoeﬂ'icient 7 18 in deter-
mining the slopes of the regressm»ﬁalﬁsaullﬁli}’%ﬁg?g the most
eonvenient method for defining the general tendencies in the
data. The rise of prices, forYnstance, during the last fifteen
years can be readily measured by the rate of rise of the regres-
sion line. 2 '

. o) Sxy
It is to be noteck{hat = has two factors, an z and a

GOy

¥, in each termeof-both the numerator and the denominator and
hence is ﬂﬂt:-hsign\ged by multiplying each & or ¥ by the same fac-
tor, That.ds)r is independent of the unit of measurement of the
class s'n{(mals, :
Si:uce both « and ¥ are measured from the respective means
it s Xikely that both & and y will be consistently positive or nega-
(tive at the same time for correlated data clustering along 2
regression line. That is, the products #y will be consistently
positive or negative for correlated data. Where the data is not
closely correlated some of the products will be positive and some
negative. In other words, the sum of the produets xy, will be
numerically large for highly correlated data and smatl for un-
correlated data. .
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Limiting Values for . It may be shown mathematically
that for perfectly correlated data r =1. In perfeetly correlated

Te
date, ¥ = i z, gives an exact value for y for each z, say y =
oy
Kz. Then 3zy =3z . Kx= K3z* = KNg¢,>. Also, for per,fset
1 . Ly
correlation ¢,° = — 3K? . £2=K* . o> llence risx——
ENo2 “N “Naoy
= = 1. That is, r reduces to unity for perfectly" correlated
KNsz ”~ OB
data.

~,\. v .
The two cocfficients of regression from the regression lines
y=Dby .z and 2 =by . ¥ bear an inte&sting relation to each

oy '\ V roy

other through r. For by, =— ar;d‘b*,,= — and henee by, . by
rey “roy www.dbraulibggry.ougiin ay

=— . — =172 That is, r is the geometric mean of the two re-
Or Oy o

gression coefficients. N\

Reasoning from-theé relation of r to y, we see that for truly
linear regressioniperfect correlation leads to a value of r equal
to unity, The U,Il\%ey value for r will be positive or negative ac-
eording ss.thé;correlation is direct or inverse. According to the
underlying.theory of the coeffieient of correlation for data in
which/a, regression is not linear the value of r cannot be unity
ever\though there is perfect eorrelation and hence for non-linear
Tégression r is necessarily smaller in value than the degree of
&N\ orrelation would require,

/ In data of zero correlation it is clear that the regression line
coincides with the axis and hence the value of » must be zero.

Test for Linearity of Regression. It would be suspected
from the preceding theory and discussion that the difference be-
tween 5 and r should be an indiestor of the departure of the
regression from linearity. A somewhat more convenient measure

of this departure than the simple difference is the difference of
the squares of  and r.
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Probable Deviations. The following probable deviations

(1—r%)
can be derived: P E of r=06745 ————
VN
13
P E. of (713 _— !"3) = qu e
N
v A
Exercises O\
7. Compute the regression eguations for each of the eortela.tii}x\ﬁblen
of Chapter VIL W

8. How can the value of 7 be obtained graphically {rt{iﬂ'@he regred-
sion lines? Is this a practieable method of finding the value of rt

9. Compute the measure of departure from lipearsty, (v*-—71%), for
the correlation tables of Chapter VIL. N

18. A correlation table has two measures of;(\lepa.rture from linearity.
Show that one regression may be linear snd the ofler non-linear.

1i. Show that if the value of r is hi%lh”gh regressions must both be
approximately linear, - wwwedbraulibrary .org.in

s N



CHAPTER X
CORRELATION FROM RANKS

Rank in a Series. Where the data consists of order or rank O\
in a series in respect to the characteristics there is a method «of
determining correlation from such ranks. Let us define rqo@;‘aﬁ _
position in & series so that an individual of rank one would-have
no individuals above or before it; an individual of {rabk fwo

would have one individusal before it, ete. RS

T'e pass from rank to variate correlation, that. ié, the types of
correlation already described it is necessary xtQ\linow the form of
distribution of the values of the characterjstiés. Only for normal
distribution has,the mguisitethesry héen-developed. It is con-
sequently necessary to employ the same. formulas for other forms
of distributions, although this mayjfppén the way to inaccuracies.

Let the ranks of the same jﬁdi’ﬁdual in regard to the respee-
tive characteristics be v, andw,. Let there be N individuals and
lety; and ¥, denote the {'gsﬁective means of the two series and oy,
and oy, the standard deviations.

Also let all the measurements of each characteristie be dis-
tinet in value; hat/is, let there be no equal measurements.

Theorqn{?}"i‘he mean ranks vy and v are equal to (N+1)/2.

Sigge}there are as many ranks as individual measurements
and singe the ranks proceed uniformly from 1 to N the mean is

(N /2.
" Theorem I1. The standard deviation of the ranks are each
equal to 1. (N2 __ 1 R
12 ( )-

For New?=3(y, —7)?
) =3 — 8% . 3+ %,
=N W41 N+ 1) — % . NEED | v,

(96)
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from applying the formulas 3N*=1/6N (N + 1) (2N +1) and
3N =1/2N (N +1). Substituting further we have

E 2
Noy =1/68 (N-+1) (2N +1) — N(N; D 4 NU‘;* 1
and on reducing, = -1;2: {N*—N).
Therefore 0'”:= L (¥*—1). O\

."\

The following theorem is necessary for the compu‘gataon of
rank eorrelation. 2\
o2 (N

29‘,13 v:
\

For, (z —y)2 = g2+ 42 — ny, andiy\x ¥)* = 3g® + 3y

—-22a:y, or No®»yy =Ng.®+ Noy?

But Szy=r . N . 0z . o, Wy dhrauhbl "ary.org.in

Theorem I, I o=y, r =1 —

Therefore, No?_y) = Noi *Ta Nﬂr —2 l\ra-,cr,,

~0'x2 + 6y° —&®

and, #

~\ 2ox0y
‘f} . &y
\ o =ay, ¥ = 1—

2o,?

where ¢° ) Jg¢he mean squared deviation of the difference
between 2 andy.
"\s'

. 3.\\

,.\1”:}:' Show how to compute the valus of r from the data of student
ot oyt ota—n

Exercises

ﬁight and weight by the formula »—
2oy0p

Theorem IV. The correlation coefficient af the ranks v; and
v, i3 given by the formula,

62 (v —w)?
T vy — 1_-—- —Nﬁ,‘_'_—n.“‘
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On making use of Theorem III, we have,

2 (y
rygpe=1--2 Ws " Tv/ (v —vs)

@ A
»

%, NN -1y, LV
12

63 (v, — v,)'.K\':
o N ; 1)

To illustrate’the thetho allh’%éq compute the Tank correlation
between yearly mean tempefature and yearly mean rainfall for
Ohio from the data arranggd in ranks.

The order of the'twenty-four years in respect to tempera-
ture is written in ﬁhe first column and in respect to rainfali in
the second. The\hes are disposed of by assigming the ranks in
the inverse orde‘r of the time, thus with 1903 and 1902 each at
505 in the.full data, 1903 is given rank 15 and 1902, 16.
The th;;a\column contains for each year the differences in rank

Wect to the two attributes, temperature and rainfall, and
tlm fourth the squared differences. On adding the fourth eolumn

<\: ~and applying the formula r=1-— M we find r=0.07.

NN —1)
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Computation of Correlation from Ranks

1 (2) (3) €Y
Year Temp. Eainfall  Difference  Sg. Diff.
1911 1 4 3 9
1910 17 6 11 121
1909 13 5 8 64 X
1908 5 19 14 196 Q
1907 22 3 19 361 A .
1906 9 14 5 254 \J)
1905 20 10 10 100)
1904 24 17 7 N4
1903 15 16 1 .03
1908 16 13 30N 9
1901 18 24 N 36
1800 2 21 RN 361
1899 1t 18 SO 49
1208 6 28N 4 16
1897 14 1) v 3 8
1896 7 \gaﬁ%ﬁ.dbraulibr@ry.org_in 4
1895 21 WL 2 4
1894 3 N2 19 361
1893 0 N7 3 9
1892 194 14 . 25
1891 e\ 12 " 18
1890 ’\\":i 1 3 9
1885 N 11 20 9 81
1388\“5, o3 8 15 295
DT = 3 (4y— vy ) = 25140
NOF@r—1) =13,800 B3 (g — py)2 = 12,840
O 63 (e — vs)?
N r=1— —1.-093 == 0.07
QO NP —1) '
Ties in Rank. The application of the formuola
6 _ 2
oy, =1— Al w) is straightforward and direct. The
N(N—1)

only uncertainty arises from ties in the measurements. Thus in
the preceding illustrative example it was found from the data
that the temperature for each of the two years 1907 and 1894 was
52.3. What ranks are to be assigned to each of the measure-
ments? In order to avoid complicating defails in an illustrative
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problem, in the preceding comnputation we gave the latter year
the numerically smaller rank, but ordinarily it is better to base
the ranks on either of the two plans:

(1) The Bracket Rank Melhod, under which the ties are
assigned the same rank and that equal rank is taken as the rank
next greater than that of the individual preceding the ties. Thel
next individual after the ties takes the same rank as if preceding
ties had each been given ranks differing by unity. Thus un&er
this methed the ranks of the illustrative example are as glven in
the table below.

(2) The Mid-Rank Meihod, under which ‘L]“f\bti’q are given
the same rank but that rank is the rank of tade mid-individual.
In the column below the two methods mayy bé'( «ompared.

Under either method the total number of ranks must be the

same and equal t@\.\NJ dbraulibrary .org. in

Rank of Ties
Temperature_“Bracket Method  Mid-Roxk Method

1911 528 o 1 1

1800 52.3( 2 3

1894 52.3 2 3

1890 \’\52.3 2 3
1908 52.1 5 5.5
1898 NS 521 5 b.5
1892 A" 51.7 7 7.5
1391\~ 51.7 7 7.5
{ng‘ 51.6 9 9.5
(1888 51.6 9 95

1899 515 1 1

LN 1880 51.1 12 12

< ™ 1909 50.9 13 13

1897 50.6 14 14
1903 50.5 15 15.5
1902 50.5 15 15.5

1510 - 504 1% 17

1901 K02 18 18

. 1802 50.1 19 19

S5 500 20 20

. 1895 . 499 o1 a1

1907 _ 9.8 pes g8

- . 1888 - 405 23 a3

SBe - ase 24 24
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Exercises
8, Compute y . from the above ‘‘bracket method’’ ranks.
3. Compute 7 vy, from the above ‘‘mid-rank-methed’’ ranks.

Standard Deviation of the Rank Coefficient. 'The Standard
Deviation of » when computed from ranks is in acecordance with
the formula o%y, = _il.__ (1—r2va,). N

VN <O\

Perfect Rank Correlation. Ranks are perfacily pdr?elated,
according fo the formula, when 3(y, —v;)?=0; "thafs. is, when
each individual has the same rank in hoth series.*/Also there is
perfect negative correlation when lemperature{and rainfall are
inversely related so that the year with the l\ghest temperature is
the year with the lowest rainfall and so, o.z}np to the year with
the lowest temperature which is assocla‘te\d with the highest rain-
fall. www dbratlibr "ary.org.in

Uncorrelated Data Accordmg to the formula, the sum of
the squares of the differences 8 the ranks is equal to the sum
of the squares of the ranks\When r=0. Thus when = ¢ sub-
tracting the ranks has legb its mgmﬁeanee—and this is exactly
the idea of zero correldtion.

Hence the ranls\\eoeﬂiclent r, 18 accurately slgmﬁcant for
both perfect and{zero correlation.

A Correctioh Formula for the Rank Coefiicient. There is
1o assuran@,\ﬁowever that in general the rank » will exactly ex-
press theMrue variate correlation. For instance, note the two
followmg serieg of deviations.

\100 80, 70, 65, 62, 80, 55, 50, 40, 20; and 100, 99, 98 97, 96
\95 10, 9, 8, 1.
The ranks are the same in each series namely,
1, 2, 3, 4 5 6 7, 8 9, 10,

The coefficient # vy, whick depends solely on the ranks, has
the same value for a series of which the first is typical as it does
for a series of which the second is typical. And yel the two dls-
tributions are fundamentally distinet in form.

Therefore, except for the two extreme cases of data of
very high and of very low correlation, the value of a correlation
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coefficient eomputed from ranks must be interpreted with caution.
For a distribution which is approximately normal in form
the following correction formula for r has been derived by

Pearson: roy = 2sin —’—6’- Frgpy.
From the Table below the valnes of r,, can be obtained™\
directly from the value of r vuyy for each 0.05 of ¢ vay. AN
£
Corresponding Values of rg and #v.wy. o\ b
Yovy Ty oy ks
0.00 0.00 0.55 0.57
0.05 0.06 0.60 \\ > 0.62
0.10 0.10 0.65 0.67
0.15 0.18 0.70 0.72
0.20 0.20 0.75 ) 0.77
0.25 0.26 080" 0.87
0.30 0.31 No.ks 0.86
0.35 wwv\ﬂ&ﬁraulibl'a]‘y).qt'é’:iﬂ-go 0.91
0.40 0.42 SV 005 0.96
0.45 0.47 8 1.00 1.00
0.50 0.52 % .
Probable Deviation of %y Computed from Ra.nks As given
o) 0.7063
(1—r?).

by Pearson: P, E{{ rg, from ranks =

Exercises

4, Detering Tyy from the value of Py computed om page 99,
5. Com'\te the value of the rank r from the data of other exercises
and eompare’ bwith the eomputed values of the variate r.
'I{h} Accuracy of the Coefficient r,, when computed from
Ra!;ks. When the measurements are arranged in ranks and the
\bqefﬁclent is computed from the ranks alone, the computation is
based on the relatively limited information which the ranks can
econvey. Hence the resulting coefficient cannot be as trustworthy
and reliable as the moment coefficient. However, when a detailed
correlation table cannot be constructed owing to a paucity of in-
formation, it may still be possible to determine the rank of the
?ndividua.l. If proper allowance is made for the necessarily wide
inaceuracy of the computed resuli, the rank coefficient is betfer

_ ian no coefficient at all for such inaceurate or indeterminate
ta.



CHAPTER XI
THE MOMENTS OF A DISTRIBUTION

Definitions and Notation. The first moment, cbtained by
multiplying each deviation by the corresponding frequenecy, ad-
ding the resulting products and dividing by the total frequeney
of the distribution, was discussed in Chapter IV in conneétion
with the arithmetic mean. The second moment, in %#hich the
deviations are squared before multiplication by the“fréquencies,
wag discussed in Chapter V. The third and fédrth moments,
with the deviations enbed and raised to the foq¥th power respec-
tively, were referred to in Chapier V. \

Obviously the moments may be coiputed about any point
by obtaining the deviations from thal ioint and raising to the
appropriate power, ete. For must'pdbpests,howeverthe second
and higher moments are compufed about the mean which thus
serves as a standard origin fqé,’the moments.

The moments about the mean are denoted by the symbols
s Py Py, €4C., Wheré'the subscripts refer to the order of the
moments ; that is, t};Q‘;Ji ex of the power to which the deviations
are raised. Under\t e same system of notation, the moments
about any othes 'péint are denoted by p.’, gy #s'5 s 0tC.

The momelits about the mean may be computed directly by
first computing the mean and then subtracting the value of the
mean from each deviation and using the resuliing differences in
the domputations for the moments. This method of computing

N fhﬂ;’n{oments has the advantages of simplicity and directness but

{ ¥ usually leads to troublesome fractions and ii ordinarily in-

volves more labor than the indirect methods which are deseribed
In this chapter. :

Transformation Formulas for the Moments about the Mean.
The formulas for the moments about the mean in ferms of the

moments about a fixed point will now be derived. Let d be the
mean deviation, that is, the distance of the mean from the fixed

(103)
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point of reference, and let the z’s be measured from the mean.
Then corresponding to a given value of « there will he the devia-
tion «' about the fixed point, 8o that £’ =z + 4.

From the definition of & moment we have,

1 Nd
e ——3(m+d)y—-ﬁ-2xy+N, ~
=, -+ d=d, since Soy is zero, (Theorem, Cha;:{ten;W) ;

1 1 d Ndzy >
o =— + d)%y = — Sr? — By T —=
[’ NE(z d)ty Nﬁmy+2NExy+ T

&
=p, + d?, since Zxy =0; Q)

1 ' 1 3d N0 82 Nd?
'=—2 + &)y =— Sat e e +
s (z + @)%y szy+ Sty + 7 3t

= + 3d w_?ir gprauhbl ary. otgrn

’.

| “
Ke=giet+dty ¢
_}_2 L4 A\ L8 +4d°2 4 e
N N &Y N o4y + — 2wy I3

=p, + 4dp.3 -t- 6d%u, + d*.
Transngosmg a part of the terms in the four preceding equa-
tions and{¢hanging the signs, we have the following equations
Whlelhexpress each moment about the mean in terms of the cot-

rESpondmg moment about the fixed point and the moments of
. {OWBI‘ order about the mean:

Y% = pm’ —d=0, since p,’ =d;
O

b = ply — Bdp, — d?;

g = pfy — dedpy — 6%, — L.

These formulas for transferring the moments from a fixed
point to the mean are arranged in what iz called the coniinuous
form; that is, they begin with the moment of lowest order and
proceed step by step to the fourth moment.
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Exercises
1. Compute the third and fourth momenis for the student height
data ai the beginning of Chapter I1T.
2, By taking the fixed point of reference at various points show
that for the data of Student Heights the third and fourth moments are least
when eomputed ahout the arithmetie meam.

3. Find the first, seeond, third aand fourth mements about the mean
of a distributien with frequencies proportional to the suecessive terms inthe
expansion of the binominal (p 4 p)=o.

Ans. g ==npg; #,=npq (P—q); u, =npg3 (n—2) (paL L)

"The computation of the moments about the mean either
direcily or by first computing about a convenient priigin and then
transforming to the mean is open to the serious’ practieal objec-
tion that there are no convenient methods of cﬁ"?e%iing the results.
The arithmetic of the following summationdmethod is compar-
atively brief and admiis of satisfactorg(éh%éks on the correctness
of the resu]ts. d];" )

Summation Method of Coﬁp“{iﬁn?lgﬁglﬁ mefits. The deri-
vation of the formulas of the Summation method is somewhat
detailed but entirely elemaziﬁﬁfjr throughout.

Let, us take a distribution with the five frequencies, 4, ¥z ¥s»
Y, Y5, corresponding 46 values of z equal to 1, 2, 3, 4, 5. By the
ordinary direct uﬁﬁfm(’i, the first moment about the point 2= o
is y, + 2y, + Sy, + 5y, divided by N. Now let us arrange
the ¥’ in versiéai order and add in the manner indicated in the
second eolQ'ricm following.

(1) O (2) (8)
Y .J§1+ Yo+ Y + Yt Ys Y, + 2, + By, + 4y, + OYs
YN Yo T Yy F oyt Yy Yat+2ys+ Byt 4y
RN ¥ T Y, + Yy s+ 29,1 3Ys
N\ Vs Yo T Yy . vt 2,
Ys ' Y Ys
3y, + 2y, + 3y, (+ 4y, + 5y, . y,+3y,+6y3&.‘50y*+15%

4}
Y, 8y, + 6,10y, + 15y, Y +dyg, +10y,+20y, 135,
v+ 3y, + 6y, 10y, Yot 4,410y, 1201,
¥+ 3yt By, y,+ 4y, +10y,
y,+3y, ALK
Y

v, +4y,+10y,+ 20y, + 85y, o+ Byg - 15y, 185y, T0Us

¥s
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The sum of the second column is thus the same as for the
first moment. By the direct method the second moment about the
game point is ¥, + 4y, + 9y, + 16y, + 25y, divided by N. Let
us designate the sum of eolumn (2), when divided by N, by §,;
the second divided by N, by S,; the third when divided by N,

by 8,, ete. That is, N\
¥, T2y, + 3y, + . L. Y+ 3y, 6y, + LW
8, = , 8, = I G L2
N ¥y O
Yy, 4y, +10y,+ . . . y+ 5y, + 150" -
8,= , 8= 7 - 2

N RS
It is apparent on inspection that 28; — 8 igvthe second mo-
ment. In symbols, o\

\
2 (y1+3y=+6ya+10y4+15y5) — (ylﬁ-2yz+3ja+4yd+5ys)
N
www.dbraulibr ary ogg‘m

'""" (y1+4y2+9ys+ 1694+95J5)

»

That is, x', =28, — 8.
The third moment at@ut the same point of reference is
X ¢

= (y14§8y2+27y3+64y,+125y5)

For this '\moinent the foillowing relation is readﬂy verified :
W,=68,—68,+ 8,
\ ]

EXteﬂdm% the reasoning to the ease of the fourth moment,
We"have

\‘; ~ ]o= 248, — 368,148, — 8,
We thus have four relations connecting the moments with
the §%:
W =28,
pa =28, —8,,
Wy =68, —868,+ 8,
W= 248, — 368, -+ 148, — 8..
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Transferred to the mean as origin by the formulas of page
104 these moments become

B,=d;

by ==y — P == 28, — 8, 2 = 88— d(1+d) ;

o = g Bilpy— 9= 68,68, + 8, — 3y — P,
2= 69, — 3y — 3d (1 -+ d)+ d— 3dp—d®
=68,— 8, (1 +d)—d 1+ d){244d); .

O\

and similarly, g, = 248; — 2u,{2(1 + d)+ 1} -

—wf6 (L4 d) B+ d)—1j—d (1% 2

(2+d) (3+ d).

7

"

It is evident that the same relations hold fo; a larger num-
ber of classes than the five which we have gssumed for the pur-
pose of illustrating the method. O

These relations connecting the moments about the mean with
the sums obtained by this proees& 3 o R ARBY: e materially
shorter and more convenient th}m the direct formulas. It will
be noticed that the sum of any \column is the largest number in
the next eolumn, so that & Batisfactory check on the summation
is afforded.

The following ¢ é@putatlons for the data of student heights
ilystrates the swam \tmn method.

ComputatlQns of this length should never be attempted
withont ﬁxs.t\arrangmg a complete form with a place for each
number, ghd“that place so chosen that the number is in its most
conventent location. The entire computation should be planned
before. the arithmetic is begun. In this eomputation the fre-
A{llehmes are accumlated from the bottom, Thus 4, (4+9),

a3 + 23), . . . are the sums of eolumn (2), and similarly for
columns (3), (4), (5). Then each eolumn is added and the sums
cach divided by the total frequencies. The quotients so obfained
are the ‘CS! ’J'
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Computation of Moments by Summation—Student Heights

(1
Class Freq.

1 2
2 10
3 11
4 38
5 a7
6 83
7 108
8 126
9 109
10 87
11 75
12 23
13 9
14 4

Totals "‘fﬁ‘ﬁw'dbsrgaé'shbm%ﬁ‘ag ©

(1). d=8,=

(2). a(1 4 @)= 7081
(3). a(l 4 @) (2 -.d)=696.069
(4}). 314 =

(5). 42 £ +2 =376

(8). 6(1 + &) (E\EF @)1= 527.66

(2)

750
748
738
727
889
632
539
433
307
198
111
36
13
4

(3) (4) (5)
5025 28463 105421
5175 22588 76958
4427 17363 54420
3689 12936 37057
2862 9247 24121
2273 6285 14874
1641 4012 8589
1102 2371 4577
669 1269 2206
362 600 & o7
164 2380 337
53 \ 99
17 721 25
4 ~\ a 4
105421 820625

RE )

A

79 8, _37,95 8, — 140.56 8, — 439.5.

— 267 p, =28, —d(l 4 d)=>5502

o= Ve,

= 68—y (4).— (3).
\m*m i (8) —y (6).— (3.4 ). (8) — 85,087

= 2.38

— 2015

Correc\ti\n Formulas for the Moments. All the methods
that ]mig~been proposed for finding the moments assume that
the fréquencies are concentrated at the center of each class.
’g}emally the deviations are continuously distributed from one
- \end of the range to the other so that there ig nothing in the

ete.

natore of the data to correspond to the classes, mid-ordinates,
A certain degree of error is therefore iniroduced by these

methods. 'We are not really working with the actual deviations
but with the artificial classes built up from the actual deviations.
In how far then are facts, which hold for the classes, of signif-
cance for the actual variates? Tt may well be that in ordinary
statistical work the closeness of the measurements may not war-
‘rant taking these errors into account but the corrections are
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easily applied and frequently make a significant difference in
the results. However, the corrections should not be applied to
data not accurate enongh to warrant such ecare no matter if the
corrections are easily applied. The methods adopted in compu-
tation must never be such as to presuppose more accuracy than
18 actually present in the data.

‘When the distinction is made between the moments as cal-
culated from the class frequencies and deviations and the son’
ments ealenlated under the assumption of continuous vamatmn
it 1s customary to denote the values as computed by v,,,ra, va, Vas
and 'y, 5, vy, ¥, and reserve the corresponding p’s for the’values
under the assumption of continnity, When no ag}eipmt is taken
of the distinction between the discrete and eontinfious series of
frequencies, the u’s alone are used. The v’yade often spoken of
as the raw or unadjusted moments and'th?e ‘4’s a8 the adjusted

momen
ents. W W db:r‘auhhlary,org_in
The adjustment or correction foa:mulas are:

E XY

My =¥, =0 “:':'
Py = "2_‘1/‘12.‘“
n“'s:"s AN

L T Yy ""‘\’{"‘s._i- as0

The theory of. thESe corrections is due to Dr Sheppard and
Profesgor Pearsml

A.ceord;qg\o the nnderlying mathematical theory these cor-
rection forthmlas hold in strictness only for a frequency curve
with high contact at each end. When these conditions are not
satisflad it is probably best not to apply the corrections.
S\ JTheorem I. Changing the umit of measurement of the do-
viations; that is, multiplying each deviation by a constant, mul-
tiplies @ moment by the constant raised to o power equal lo the
order of the moment. For,

M:—;’?Ez“y apd  S(rz)ny =Ny,
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Theorem Il. Mulliplying or dividing each frequency by &
constant does not change the moments, For,

Szry _ rSz"y _ Zx'y
Zry 3y 2y

Because the values of the third and fourth moments deper}d.
on the unit of measure of the deviations it is usual to &mploy
these two moments in the forms 8, and B, respectively; Where
8, = p?,/u" and 8,= u,/p,% The denominators aeg powers of
the standard deviation which measure the dispex;sijo}l. The powers
are arranged so as to show that g, and 8, areindependent of the
unit of measure of z. Let us write O !

N(Za2%y)? ":.\I'\’(Em‘-‘y)
s T SR a
(22%y)® \ (Zxy)*
www.dbraulibrar, yzorg'. in

Then let = be changed inte## where  is any constant. This

gives

_NEwy): . NEaty) _ NV el

1=

Say) . rt N (32 Nt Eh
N\

It appears th?t 8, is a measure of the symmetry of a curve
because_!.,s ig~gero for a symmetrical curve. A negative sign
for V8, 001:’5135 from a negative value for p,. When the curve
BXtend%{%ther to the right p, is positive.

{Fhe significance of 8, arises from the value of x, as com-
pa‘red with s. It may be shown that for the normal curve B.
~[(eduals 3. For a curve having x, more than three times o* there
‘must be a comparative spread of the variates away from the
center. Mathematically speaking p, is made up of the fourth
powers of the deviations and ¢* is the square of the average mean
square deviation. Hence large deviations enlarge g, more

than %
The term Kurtosis has been applied to 8, — 3. Kurfosis is

accordingly a measure of the flatness of a curve in comparison
with the normal curve.
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Exercises
4, Bhow that adding a constant to each deviation changes the mo-

ments.
5 Show that adding a constant to each frequency changes the mo-

menta,

6. Show that the square of Zay is Bazyz | ZZz y x4, where the sub.
moripts are sttached in the second summation to indicate the productof
unegual deviations, and all deviations are measured from the mean amd by
actually esmputing the separate value of each summation verify thp,{:'e?ﬁtmn

for the distribution 1, 2, 5, 2, 1. « N

The Moments and the Equation of the Smootlle'd: Curve. It
is shown in Chapter II that a smooth curve is. fittéd on the basis
of principles which are assumed true for the data as a whole.
One such prineiple is that of equality of a,rea\which assumes that
the area under the curve is equal in numerical value to the total
frequency of the distribution. ww’w"ébl'.amjbrarym, o.in

The Principle of equality of JWoments assumes in addition
to the equalities of area and of total frequency that the fivst,
second, third and fourth moménts ecomputed from the adjusted
frequencies, are respectivély equal to the same moments com-
puted from the datg., ()

‘We may look ,u}}n the area or total freguency as a zZero
moment since y2%="y, regardless of the value of .

To ﬂlust{a:t?a the application of the method of equality of
moments let s fit a straight line to the points (2, 4), (3, 3),
(4, 6), (ByT).

The' equation of the required line is y=max + b where m
snd b are to be determined. The ' in terms of m and b are

'+ b, 3m + b, 4m + b, 5m + b for the respective points. The
total frequency is aceordingly: Zy=4-+ 8+ 6+ 7=20, from
the data. We have Sy—=3(ma-tb)=m3zpNb=m (24314
+5) +4b, from the assumed equation, = 14m + 4b=20.

The first moments are ga;y-_."2>(4+3><3+4>(6+5><?=76,

from the data, and X{mz + b)z =m3s® + b3z,
ot (41 O+16-1-25) + (243445

=F4m-+14b = T76.
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‘We thus have the two equations to solve for m and b,
14m + 4b=20
_ 54m + 14b = T6.
These equations give m=1.2 and 6=0.8.

Hence y=1.251-0.8 is the equation which gives the straight >

line having the same frequency and the same first moments‘gs
the data. 7N\

Vet us fit the parabola, y =0 + bx + cx?® to the szimé data.

The equality of the y’s as computed from the data and from
the curve gives the equation 4a -+ 14b + 5dc = 20~

The first moments give 14a - 545 - 224p= 76.

The second moments give 54a 4 2%@;}'9780 = 314

By the usual methods of elementary.algebra we find the fol-
lowing values for Qw?w 'd6faulibr "ary  oF k. in

a—%ﬁ 3
b-—-—2 3
L=+ 0.5

K
and hence y =6 .. 3~=—%L;.3w 4 0. 522

It is evident that an extension of the above methods would
give an equation(df the form y=ga+be+ex®+da”+ ... ..

The deriyed constants, ¢, b, ¢, d . . . would be such that the
frequeney] first moments, second, third, etc., moments computed
from tHe\ordinates nnder the curve would be equal to the same
momél,ﬂ‘s computed from the given frequencies.

\ﬁ ~An extended application of the method of moments to eurve
bt

ing is presented in the Appendix where the generalized nor-
mal_eurves of Pearson are treated.

Least Square Test of Fit. The basic idea of least squares

is of interest as an alternative method of determining the ‘‘best
fitting”* straight line.

Let us take the straight line y=maz + b
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and the points (2,4), (3,3), (4,6) and (5, 7) which, for eonven-
ience, we may denote as (mn y1).~ (953, ¥a), (ms; ys)’ ($4: y:.t)-
On substituting,

Y, = mz, +b,
yz = mxs +b7
Y = mzy TH,
Y, =mz, +0, Ko

The values of ¢ so computed will exactly agree Wiighl.t\he
actual y’s only for points Iying exactly op the line. In{geperal
there will be an error, say, e. Hence we may write_ 4

me, + h—y,=e

mz, +b—y,=e, PN
me, +h—y,=e,
me, +b—-—y‘=e‘

According to the least squam‘»basﬁtbltest;lim jamtgﬁhls where
the gum of the squares of the errom,m least. On squaring the ¢’s
and adding we have, (mx1+b——g Y2 (e, +b—ay, ) 3+ (ma, +
b—1,) 2+ (mz,+b—y,)?, which is to be a minimum. This ex-
pression is a minimum when the following two expressions each
equated to zero are tru\

z, (mz, + b ’“—‘y1) + xzr(mxz'l'b—‘ya)—}'xs (mez,+ b_ys)
'\.. +$4(‘m:1‘14 + b-——!ﬁ) '—0
and, (mb, +b—y, )+ (me,+b—uy,)+ (mwa-l-b—y,)
"\\ +(mz, +b-—y,) =0

On collectlng we have, m(z?,+at ot +a2)+b(z, otz te,)
) — (&, Y T2 Y7, vtz ) = 0,
and m(z,+z,+x,F2,)+4b — (y, Tty ty,) =0.

On substituting the values for the ¥'s and «’s we have,

5dm + 146 — 76 =0
14m + 4b—20=0.

These two equations for determination of m and & are ex-
actly the same equations as have been derived by using the
methods of moments.

N
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The student of caleulus will recognize the foregoing equa-
tions as the result of equating to zero the partial derivatives
with respect o m and b.

These results show that a straight line fitted to daia by the
method of moments econforms to the least square basic condition.

Insofar as fitting a straight line is concerned the two methqu<\
are identical.

=
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CHAPTER XII

FURTHER THEORY OF CORRELATION
N\
Index of Correlation. The foregoing measures of correla-
tion may be made use of in ways which can be app]igd\' to ad-
vantage. The concept of the index of correlation is paged on a
rearrangement of the formula for the correlation goefficient or
the correlation ratio. This rearrangement inﬁﬁlﬁé’g a measure-
ment of the divergence of the data from the régression line or
curve. The ideas underlying the index may)be developed as fol-
lows. O
Let there be a series of pointsXXy Y) and let 2 line of re-
gression be ¥ = ¢+ 8X. The ﬂmﬁlmdihhtwpbmlnes, the ¥'s
will differ from the computed ¥ by the differences (¥ —T17).
The sum of the squares of }'gili" such differences is (Y —¥')%.
This latter summation i divided by the sum of the squares of
the deviations of the{l}(ﬁg Prom the mesn, Y, of all the ¥'s. We
N (Y
then have th(?' gpre331on -'————‘2 ¥ —1)r
It is%ﬁﬁ@ on a following page that the above expression is
equa}\fo.\"('l-—rz) where r is the correlation ratio. Or, if the
regijbs\.a.ion is not linear, equals (1—y"). On .t_ransposing and

‘f;;' i have r2=1 HY— 7).
sehanging =1203 we have = -_E(Y—*Fﬂz

Aside from the mathematical proof of the foregoing rela-
tion in #, it can be seen by general reasoning that the summation
numerator is proportionally smaller as the actual points cluster
closely about the regression line. That is, the more highly corre-
lated the data the smaller is the summation fraction and hence
the larger is the value of r.

(115)
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On substitnting in the second moment equation we have

Nrawy, = by« Noi®

o, gy
Therefore by, —r . = and hence y, =7 ., — . x is the re-
Tz Tx
% W\
quired regression equation or ¥; =b,, . x, where by =r —.
N
NS “
Exercises \J
ox ~ O
1, Derive the regression equation Tr-y = F— . '\\"
Ty ¥
2. Prove in detail that ZZn y—o where «@\and y are measured
from the mean. AN

W

When =z and y are measured fram the original axes the re-
. . waww.dbraulibrary okgin
gression equations become R

NS

g
Fi—F =1 (2—2)
"
'\ T
B—EF=r— (y—7)
N
Proof of Qe}rélation Index Formula. The formula for the
N (Y — ¥ .
index ofregrrelation r* =1 — —————— may be written
D N/ (Y — Y) 2
W Sy—y)?
7381 — ————— where 2 and y are measured from axes
».\ 7 E?f
through the means,
Uy
Prom the regression equation, y’ = bz, where b =1r —.
Tr

We have y —y'=y— bz and Sy — )2 =3(y — bz}~
That is, (y —y')? = Sy (y — bs) — b3z (y— bx),
=3y — b¥zxy — b3ay + B3z’
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But bSs?=Szy, since y = bs for points on the line of re-
gression, and henee b?3z* = bZxy.

(3zy)?
Henece S(y —y')? =3y — bZey=Noy! — ——; from
bt
the regression equation, = Noy*® — Nitog?
Sy —y)? O\
o0 ——=1—r%
Not s
_ S(y—v)

Thatig, P#=1— ———.
Eyz ) %

The Relation Between n and 7. It was ShO?W\ﬁ in Chapter

IX that » and r have the same numerical vaiug when the regres-

sion is truly linear. Henece a lack of ag}:@e}n'ent in the values of

» and r is an indication of a divergenpe from linearity in the
. . . N\’

regression. The difference bq}wmaﬁ%lgrg{%{gbe expressed

. .In
by the two equations: AN
Nog (57— %) =k (T — 32)*
and  Nef{n — rﬂn)“:‘ 2y (X, — x,)% where ¥Y.and X, are
the regression line means as opposed to 7 and zy, as the actual

means, LA
To prove the, first of these formulas let us add and subtract

5 for each ’qe;gﬁisiﬁ the summation Sn (Y, — §.)2. We then have
after expgx@iOn,
— N\V — — _ _ L
S (T 322 = In AT —2 (X —79) (. — 9+ (G}
:’bn gubstituting from the regression equations the right
li§ﬁd form becomes

AN

\ 4 _ ﬂ’yz oy —_
Sng(z—)? . 2 — Sy (J—9)—220x . T — (5:—F) (=—=),

Oy oz

: Oy gy
which equals Noy® . r*— + Noyt .yt — 2r — Nroxoy,
A
Gx oy

which equals Noy? . 52 — Noy'r™.

That is Sne(Tx— o) = Noy* (5 — %)
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Exercises

3. Prove the formula Sn, (X, —7)2=Nog® (g% —r?).

4. Show from these formulas that o> r.

5. Show that the same pair of equations will be obtained for the
regression lines if the assumed lines are fitted to the individual frequencies
instead of to the means of the arrays. "\

The Coeflicient 7 for Non-linear Regression. After thé Jyir-
ther correlation theory of this Chapter it may be well fo)repeat
that r is always too small in the case of a distributibn *ﬁt}t strictly
Iinear. If the regression curve is carefully drawp @tair idea of
the trustworthiness of r can be obtained by ¢h¥erving the depar-
tures of that curve from linearily. A moPe aceurate way, of
course, is to compute both 5 and r and basrve the difference in
value of the two measures of correlatib:n. ’

O mRe
Since r = -

Nowy ™
the size of r varies direetly as the value of the summation in the
numerator. In this.siﬁmlation the largest product values are
when the poinis f’u'}\}.li}ng an z and ¥ diagenal and hence r will
be largest numeridally when the values of n., are largest along
a diagonal, /1fhe frequencies tend to lie along one diagonal the
value of J(Ql]l be positive; along the other, negative. 1If the dis-
tribu::.i)& should exhibit two tendencies,—to concentrate along
botd) diagonals—the cancellation of terms with opposite sigps
o~ jvbuld give rise to a small value for r.

)  Agsin the regression may be markedly non-linear, circular,
or periodic as a sine curve, so that the straight line fitted to the
means of the arrays is practically horizontal, resulting in a very
small value for . This may be true even for data which shows a
definite tendency for the frequencies to cluster closely along the
curve of means; that is, it is possible for r to have a small value

even though the data shows the attributes to have in fact a high
degree of correlation.

The Most Probable Valus of a Characteristic can be deter-
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mined from r. Let us first define the properties, homoseedas‘he-:

ity and homoclisy.

The squared standard deviation from the regression curve of

the frequencies of an array has been denoted by the symbol
{nsing larger type to distingaish the double subseripts)

Sa,

or, in terms of = , (];y =gy (1-—7?).

where g;y =06, (1—v?)
O\

NS ¢
It must be remembered that these are mean values S0, that. it may
well happen that a computed standard deviation of an individual
array may differ considerably from that obtam\ea from these
general formulas. A distribation in which alllg¥rays of a given
sense’ that is, all ¥ or all z arrays have thedame standard devia-
tion is said to be Aomoscedastic with resp'&ze;t to the arrays of that
sense.

It bas been assumed that ﬁm %beaﬁ]éﬁéfé'sy SFBNE arrays are
so distributed that the means @nd the modes coincide; that is,
50 that the mean is the most pljobable value of the array, but this
may not always be true, ~The arrays of a distribution are said
1o be homoclitic when th‘e Ynean is the most probable value of the
array. &>

On the basis’ef the just preceding definitions it may be said
that for homoglme arrays the most probable value of y cor-
responding & & given value for z is found from the equatmn

NV o
£ \ ¥y=r '—y* T, or
" & Ox
...\:;\.' ey -Oj (2 —3)
\ ), ¥y—3y - |

A knowledge of the most probable values is of little im-
portance unless aeccompanied by information of the dispersion
about thai value; that is, of the standard deviation and the
probable deviation. Since the entire theory of estimating values
of a characteristic is based on the coefficient of eorrelation the

" probable deviation of ¥ when obtained from the regression curve

is logically based on r instead of 4 and hence is 0.67459 oy

TKTIN
S Ty

LA
.
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v (1 — %), and not 0.67449 o, V (1—7°), {provided the arrays
are fairly homoscedastic, otherwise no general formula is pos-

sible and the dispersion of each array must be computed directly
from the data of the respective arrays). Likewise, the probable
error of z found from the regressions is 0.67459 ox V(1 —1#%),
with the same restrictions as to homoscedasticity. Q.

1f the three conditions of linearity of regression, of homosce-
dastieity, and of homoclisy are satisfied the just preeeding¢ﬁéory
of estimating the value of a variable characteristic 1s\ ctmplete
and practically valuable. In ordinary distributionsfthéi-‘.e condi-
tions are likely to hold, at least approximate]y,.aq'\fhat when in-
telligently applied the theory is of importande ’In every case
the regression curve should be detemine@'g\rﬁphically and both
n and r computed and the difference iné&heir values noted, and
the test for linearity applied. If thebevs doubt as to the homo-
scedasticity, the standar 'aﬁg\?lrgf%ﬁé' EMh be computed directly
from the arrays in question apci{the probable deviations deter-
mined from the resulting vgrlilé's instead of from the preceding
formula. The question.;of'homoclisy is usually disregarded
though wide departqge@}\shmld be noted and taken into eon-
gideration. LA -

N\

) Exzercises
8. What/AbtHe most probable weight of & student of height 70 inches
using tho r}z{a\éf Chapter ITI?
9. \What is the most probable height of a student of weight 132
pounde\

~310. TFrom the Chieago Live Stock prices of an carlisr Chapter, what

LN
~ig\thie most probable top beef eattle price for a month with a top bog priee
Nof $8.25¢

11. Compute the probable deviations from the most probable valnes
of Exercises 11, 13, 13.

12. Diseuss the practieal reliability of the preceding estimates. In
how far is the probable deviation a trustworthy index of this reliability®

Spurious Correlation. By dividing each deviation by a
third variable, if is possible to introduce correlation into strictly
uncorrelated material to as great an extent as 0.5,
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From the following formula for the correlation between in-

x 2
dex numbers where — and — are the two series, but where there.is
Y ¥

no eorrelation among x, y and &z, it appears that »=05 if
oy Ox ;

Hence care must be faken in dealin x}.?\-ltﬁ‘:t index numbery
that the full value of r is significant fox'the absolate values of the
measurements, By eomputingw“iz%}@lﬂiEPQW.&OEE]U}& by sub-
stituting the values for the symbdls the value of the greatest
possible degree of spurious corrélation is obtained. A value of
r greater than this value is~cértainly significant; a value less
may be significant but must \be accepted with cauntion,

Since by the formnraz\the spuricug eorrelation is zero when
the standard deviatioh.or variability of ¥ is zero, it follows that
the basce of a systet)of index numbers should be as nearly con-
stant as possible, </

A theory of“spurious correlation might be developed for the
correlati :}a:{.io but the algebraic details are so much more
workablg, for the correlation coefficient that it wonld hardly be
Worj:}(ftﬁa additional effort. It is conceivable thaf such a theory

ould be practically necessary but it is unlikely becanuse after all
o IS; approximate results are valuable. There would be Iittle of
value in attempting to measure the degree of spurious correla.
tion with precision.

Tt must be remembered that the matter of spurious correls-
tion is essentially one of interpretation. The question is what
does correlation mean. The correlation is actual and real for the
indices but it may be spurious insofar as the absolute values of

the measurements are concerned.
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SIGNIFICANCE OF DIFFERENCES
Q"
The Significance of a Difference. The analytical statisfictah
must evaluate differences in order to appraise the significadces
of the data as an indicator of basic differences. If, fofillustra-
tion, the mean height of one student distribution ig™67.9 inches

~and for a second, the mean iz 66.5 inches doc o{his 1.4 inches

C

difference indicate that the two distributiong¥aé from popula-
tions of basically different height characte@sties, or is the differ-
ence merely a chance difference from pdpdlom sampling?

In this Chapter the developmenf§ df the preceding chapters
together with cerfaity’ 'ﬁ'&&?‘%ﬂ‘éﬂ"ﬁ@iﬁﬁ%c brought together with
reference to methods of determpifing the significance of differ-
ences. The purpose here js: £0 present the underlying ideas
rather than ruoles for their vapplication.  ¥or the applications
reference is made to th¢ wathematieal treatises and the available
manuals.  Cerfain t]{earems will first be stated.

The variance }f the difference befween two variables i3 the
sum of the vartances less fwice the coveriance.

Let =, aiﬁ ), represent the two scries of variables, the two
sefs of h&l\g\ht measurements, say, and set, ©q = £, — a4y LThen
N 1

N -
AN G“a'_ — 3zd

\‘ e N
1 1
= o B(Za— o)t — =[Szl St — 23, T
N N

2 2 .
=gt Oxy, — 2r 0%, Oy {since Zx,2, = Nroz,0m

That is, the mean squared deviation of the differences from
the mean of the differences, the variance of such differences, is
equal to the sum of the two variances less twice the eovariance.

(124)
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Tt ix interesting to note that for perfectly correlated data
where G0, = Ox, and r = 1, Oz = 0, as it should be. On the other

z 2 2
hand for uneorrelated data where r =0, Oxg= Oz, Oxp. We
aceordingly have the variance of the difference between two un-
correlated variables is the sum of the variances,

The formula gz, = 2 . G;:s oF Gzg=1\/2 . 0z, shows that
for uncorrelated data the differences between two samples frof),
the same population are Iess stable than one sample, thls Va—'
riance heing increased by the factor /2 which is 1.4142.,

The variance of the difference between two uneorrelated

means from the same populatlon ig \
1 1 ]
Gr= 0Tt 07,= 0% (—— -+ oL
N, a '\ ﬁb
2 2 o X 3
where ¢ z, = 6m,= 6, and from a prededing formula the
www,d’lzfrauljbt'ary.org.in
varianee of the mean is — .0"% oL
N Ry
It thus appears that the fariance of the poputation is in the
AN
L )

\ I 1t .4
ratio of 1 to [}\; JT)\N the variance of the difference of the
& B 1
means: for samples, 0B 400, this is 1 to —.
AN 5

If it be a@éd that the variances are each the same as that
of the gene;@lqjopulation we have

2"' 2
LJOoy= o't 0" —2rg" = ¢° ( ! ! -
} LN, N, VNN,

<
24

= e (1—r), if N, =N, =N,
N

_ The just derived formula shows that the variamee of the
differences of the means is zero for perfectly correlated data.

Difference Between Two Proportions. A measure of the
significance of the difference between two proportions is of prac-
tical use in many investigations. In deriving a formula for this
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measure let us assume a population of individuals possessing a
certain characteristic in the proportion of p.

Repeated drawings from this population would yield values
for p varying from 0 to 100 per cent. If N is the number drawn
in each sample it is reasonable to assume that the mean propor-
tton from a great number of samples will be p so that the mean
mumber of mmdividuals drawn with the characteristic in question
will be Np. That is X’ = Np. It may be readily shown mathef\
matically that the standard deviation will be o=V Npg where
¢=1—p and the standard deviation of the mean f'}fiﬂ“.\be

_— ‘ _ [?q 3 N
VN pg/N , which may be written |— a3
N A

The matter of interest becomes one of tésting whether two
gseries of samples with mean propertions p,, a}std Dy, S2Y, are most
likely to come from the same population.” In symbols this is

" whether the difference (P, —7.) dobeMiot differ significantly
from zero by morwtrhmﬂhu@ghbwmemely from random sampl-
lng variations, R

From preceding theorems the standard deviations of the

difference in means is (g— L0 p2) ’

cortelation between th,ex ﬁoportlons

provided there iz no

But 073, pl N % where p is the true proportion in the popu-
N \
{ 1
Iation and~q~§"1 —p and N, is the number of individuals in the
NN
samples\nd 0P, = —.
A N,

\m ““Hence the standard deviation of the difference in the means
(pa/N.+pg/N)t= (pg) #(1/N.+1/N )3
Some assumption must be made for the value of p and hence
4. A reasonable assumption is to take p equivalent in value to
_ _ : N.p, T N.p,
the weighted mean of p, and p,. Hence set p'= ————.
N,+N,
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We now measure the observed difference in the means in
terms of the standard deviation of this difference and have

Pr— P
(p'q') (1/N, +1/N,)% Tt may be safely assumed that this co-
efficient is normally distributed, regardless of the form of distri-
bution of the characteristics in the population and hence that the
probabilities of values to exceed any derived value ean be ob-
tained from a table of areas under a normal curve.

As an illustration of the foregoing discussion of the szg{zi‘ﬁ
canece of the difference between means of proportions let psstake
two series of tossings of 100 pennies and 64 dimes, Agsunie that
p; (pennies) is 0.52 and », (dimes) is 0.48, '\a

On referring to a table one finds that the probability of a
difference numerically greater than 0.50 is 0.309, which is 309
times 1000 or almoest 1 in three times. efher the difference
of .04 in the sample means indicates asfructural difference in
the two series of coins may he & ma,tter’ open to individual opin-
lon. The point here is that a meas(llre or index has been com-
puted showing the chances that a nurﬁé‘ﬁé?ﬁ? HPERIR deviation
might arise from purely ranglom sampling from the same popu-

lation. &
ation RA

Differences in Génersl. The foregoing discussion of the
significance of diffcpences presents the basic ideas and some of
the more importgid’gpecial ideas. The differences of eorrelation
coefficients, or,geoprelation ratios, regression equations, multiple
correlation indexes, partial correlation ratios, may each be dis-
cussed fg&éasure& of significance.

Thesmathematical liferature is becoming extensive on the
subgecf of the significance of differences. A statistician without
the benefit of a thorough training in advanced mathematies need
not hesitate in an attempt to understand the underlying ideas.




CHAPTER X1V

CORRELATION IN DISTRIBUTIONS WITH A SMALL
NUMBER OF CLASSES

Correlation from a Few Classes. A sfatistician working
with data arising from experimental science, as bielogy or Aghi-
culture, or any data where the classes are very wide and Hence
few in number, has use for methods of measuring eoz‘relatlon
adapted to this type of data. Since such a dlstrlbutlon has only
a few classes the volume of detailed 1nformat10ﬁs presented is
relatively small and hence the significance ofany mathematical
index from such data must be mterpreted W\'ﬂl’ caution. It must
always be realized that by the use of any\&mount of mathematies
ene ean not obtain from data morey mformatlon than the data
sctually containg. o

Distinctive I’d\i&’sdfﬁf"bﬁk%}hﬁtﬁl'@rum Few Classes. The
indexes which have been deriygd for the measurement of correla-
tion in data distributed dufew classes are based on the elimina-
tion of varistions due(te'random sampling, or else are based on
comparisons mth fké variations which might arise in samples
drawn from the &ame population. Analysis of variance, random-
ized blocks, atin squares, measures of contingency, Chi-square
distributions ¢ach are more or less derived from some relation-
ship w&@; h the probabilities from random sampling.

This basic idea of the variations from rardom sampling is
a.lgo 2t the bottom of the idea of the probable error and the stand-

4 ‘arc'l error, and in any measure of correlation. The use of it is
N only more direct in deriving the indexes of the present chapter.

Analysis of Variance. The theory of correlation ean be
made more convenient for working with a small number of
classes by following the ideas of the analysis of variance. The

development of these ideas is facilitated by certain preliminary
deseriptions.

(128)
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Let us assume a point with ordinate ¥ and assume forther
that the corresponding point on the regression line has an or-
dinate of length ¥’. The difference between the actual value
of the ordinate and the value computed by the regression line is
then (Y —X’).

It is necessary to define certain other distinetions. The
difference between the mean ordinate ¥ and the actual ordinate
Y is, of course, (¥ — ¥). Likewise we need the difference be-),
tween the regression line ordinate and the mean of all of the'X's,
(¥’ —Y). A\

The ¥”, the ordinate of the point om the regregidn Tine iz
the mean of the ¥ array. Hence the mean squared deviation
of these Y’ points about the horizontal line throngh the center,
is, of course, the mean squared deviation uaed\n the eorrelation
ratio and measures the variation in thesmeans of the arrays.
Henee the sum of all the squares (¥’>~Y)? ia the signiflcant
factor in the correlation ratio. %3

The points themselves do BoE*sll lie on their respective re-
gression II;ea.ns. This variation from %aﬂétgﬁ?rﬁfdw, is of
the general nature of accidentsal variations arising from random
sampling. The expression, (¥ —¥’)* gives the mum of

squares of deviations\of the points from their respective regres-

N\

sion line means. )

We have fidfally the result obtained by taking the difference
between ea¢hyordinate and the mean ordinate of all of the Y's
and sqqi&i'iﬁg and totaling so as to give (¥ —¥)*

,Ij::will be presently proved that

Q"

~O Y —T)=3(Y— )+ 3 (¥ —D"

Tt is understood that these summations cover carh indi-
vidual of the distribution.

From the above equation it is apparent that the correlation
part, namely, the last term, can be obtained by first computing
the sum of the deviations from the mean and then the sum of
squares of deviations from the regression line and then gubiract-
ing these quantities. The remainder will be the sum of squares

£
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of deviations of the regression line from the mean ordinate of all
of the Y’s, or each term may be computed independently.

This equation is the principal equation of the analysis of
varignee.

Demonstration of Principal Equation of Analysis of Vari-
ance. We are to prove: O
ST —Tr=s(¥—7)+3(¥—0)" (D
By adding and subtracting ¥’ to the left hand';pgfnber of
this equation we have, N\

MY —-Tr=3((¥—¥)+ ¥ STT —
=YY (YY) + 22(Y§y') (Y —7Y)

Now the third term on the right hand side*vanishes because for
each value of X, (¥— ¥) is constapt\and hence with the sun-
mation on Y, only, we have 2(1?’.45-_1_") Y -—--Y).

Sinee, Y is assumed to belthe mean of the Y’s in the Y
array of each t‘ff)“’ewfbfﬁléhmyo‘frﬁfé' differences between each
variate and the mean is gzero, as was shown in the Chapter on
Averages. o)

Since this temi\ii %ero in each array the sum for all values
of X must accordingly be zero,

We have, fherefore proved that the sum of the squares of
the difference-of cach ¥ from the mean of all the ¥ ’s is equal to
the of'the squares of the differences of each ¥ from the mean
of its F\array plus the sum of the squares of the differences of
ea‘a.p!i’array mean and the mean of all the arrays.
™\ It should be noted that the foregoing proof holds strictly
only when the regression is strietly linear. It is easy to suspect
that if the regression is only sensibly linear the errvors from as-
suming that all array mesns lie on the regression line will be
both positive and negative, and hence the sum of the errors will
be small. That is, the term (¥ —¥") (¥’ — ¥) ig very small,
if it does not vanish altogether, for sensibly linear regression.

A more mathematical demongtration of the vanishing of the
term Z(Y—Y")(¥'—Y) is based on the least squars deriva-
tion of the regression equations which is given in the following
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paragraph. For this proof let us substitute a + bz for ¥'. We
then have,
MY —Y) (Y —-T)=3(Y—a—0dX) (ea+bX—T)
=a%(Y — e — bX)+ 33X (Y —a—0X)
— ¥Y3(¥Y ~a— bX),
But each summation factor, that is, each term in the right
hand side of the equation, is one or other of the two regression

rormal equations and hence ig zero. N

4 '\
Derivation of Equation of Regression Line. A Ieast gquare
derivation of the regression Mne equations is helpful in denvmg a number
of formulas in the amalysis of variance. In this derivation wqassume that
¥ =a-} bX ig a regression line with o snd b so choseh that the sum of
the squares of the errors made by substituting ¥7 for ¥_is a2 minimum. That

is, 8o that 2{¥ — ¥/} ig a minimum. On suhstituﬁh‘g\fve have

EY—Y)'= Z(Y—a—bI}‘
For this to be a minimum the least Bqua.re \normal equations must hold:
Z(Y-_a—-b.x.') : o,
and B X (¥ waw‘:fadxﬁ‘aalﬁrary org.i
Bxpanding these normal equations, we have, B

Y o —BIX = o
and 2xrg—-s\azx--bzx=—o

These two equations Eaﬁ be solved for ¢ and b in terms of X snd ¥.
We give the sclution gply.for the ease where the deviations are measured
from the means only, {/Then ZX =Z¥ —o,

oy XY
and hence @ —ondOd = —e-.
\’k.. =X
Some Other Theorems. Tt is mseful to have {Y—Y')® in
terms of ¥ and X. On expanding and substituiing ¢ + bX for
¥’ e have,
E(Y«——-Yr): ‘—2(Y'——G - bx):
=2¥(¥—a—bX)—a X (Y—a—bX)—bZX (Y—-a-—-zX)
=Zp — aZy —bIzy,

Finee both 3(¥ —¢ — bX) and 3X (Y —a — bX) vanish, be-
ing the normal equations for the regression line.

If we measure ¥ about the mean Y and, as is usual, replace
Y by 4 we have, since 3Y == 0 when taken about the mean,

Q"
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I(y—y')* = 2y b3ay

, ce)?
= 3¥ Sk
Sy
Since b= directly from the least square derivation or
ptd
ay Zry o, Zay Zay
b=r — — e = —
Oy Noeoy g, No? Zgt.
Again 3(Y' — Y)2 =Sy, from the mean, A
© (Say)? ()" N
= P T — , 22t = - L Y W
(Z21)? b N

Of course, (¥ — #)? = = y* when measured frqm the mean.

A Formula for the Correlation Coeficient: In a previous

Chapter it was seen that AN
2 — BN

.rl,,-2 = 1 — >
_ Y — ¥)°
(YD) — S 7Y
- g(}?‘;:??j’ ’
A Z(Y'—Y)’ )
from the Pnnc’\?%}v?‘ﬂﬁf:%fbﬂubra-ré T m_ = iy , about the mean,
\\or Z(y) = ﬁzy
It has alread\y} been proved that
o | (zay)*
\Y Z(y-—-y’)” —_— zya o
AV Za?
O\ = Zy* — riZy
= (1—#7) Zg?

%Ve may then write the basic theorem of the analysis of
%ﬁrl&nce in the form,

By — (1—r) Iy 1 FZyA
This last form brings out mathematically the fact that the
correlation is significant as the sum of the squares of the varia-

tions of the regression means, that is, the second left hand term,
is large in comparison with such variations from the regression.
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Further Mathematical Development of Analysis of Variance
is beyond the scope of this book, neither ean we extend the gen-
eral ideas here presented to the splitting up of co-variance with
its relations to the correlation ratio. Reference is made to R. A,
Fisher ‘‘ Statistical Methods for Research Workers’’, Oliver and
Boyd, Edinburgh and London.

Method of Contingency. A method of measuring correls-
tion which is readily adapted io distributions having bréad
ciasses is the method of contingeney. This method is based on a
measurement of the divergence of the frequency of esch’¢lass
from strictly nncorrelated frequencies. 'We may return to the
student height-weight data for an illustration.

When there is no tendency for certain stigﬁts to be most
often associated with certain heights, the\fréquency of a sub-
group should be proportional to the totg.k\frequencies of its two
arrays. Thus imagine the frequeneciegiof'the sub-groups erased
from the Correlation Table on page 76 and then filled in
eptirely at random; that is, wifchbut biss or selection. Since
110/750 of the total frequeney of the distribution appears
in the height array of weight ‘type 137; that is, since 110 indi-
viduals out of 750 are of wéight 137, it is logical to assume that
this height array eontaing 110/750 of %&e frequency of each array
which it crosses. (The frequency o Ui eoaTs 188 — 137),
for instance, shonld be 110/750 of 126. And in general, when the
individuals gre>placed at random, the frequency of 2 sub-group

(N g .

. P iy '
1s 8’1"(?17\@!3' the formula . For the y array of type # con-

NN -
,tams — of the frequencies of each array which it crosses. The

frequency of the x array of type y is #.. Hence the subgroup of
Ny . By

———— .

. ' fix .
intersection has a frequency ; . 7y, whick equals ¥

Now, if in the actual distribution, the frequency of a sub-
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group, #yy, is larger or smaller than the random selection fre-

ﬂy .
quency given by the formula =, . _I;T. the divergence must be

due to the presence in the data of a tendency for certain values
of the attributes to be most often associated and hence the total
extent of this divergence is & measure of the degree of fhe\
association or correlation in the deta. This method of measuring
correlation is called the method of comtingency. R\ \))
Ny . Ny \
The difference 515, —

is squared to prevent the can-

celling of positive and negative values, Since,o:;{i;s{r the relative
size of the difference is significant, this square ¥ divided by the

%

. My
above random selection frequency —-\—n On summing all
N

such values, we have the mean aquare contingency ®* where
www dbraulibrary et g IR

Sy My |2
,“xr—‘
o N
No* = 33

;1 N
On expanding and redneing, this summation is arranged in
a more convenient-form for computation. We have

:‘.\ ﬂ: ﬂy 2
Nd -
:" .‘. N 2
A€ g
\ \Y Nz Ny Rexhy
A0 N
\ : ns My |?
Ayy —
. N oy
. and hence, 33 =N ES—w—- — 2N + N,
T My Ty Ty
N
) Ny Ry 1 1
since 33

= — 3n,%n, = — 3, N = 3n, = N.
N N

. Wry
‘Therefore 2= 3

— 1
nx My



APPENDIX I

DERIVATION OF EQUATION OF NORMAL PROBABILITY
CURVE

The equation of the Normal Probability Curve follows frow\
the basic statement of a normal probability distribution. Lhe
frequencies, or the ordinagles, are the resultanis of a large’ st
ber of elemental attributes which are individually smoll.and each
are equally likely to be positive or negative. It maybe assumed
that each of these elements are equal in force or sirengih.

The height of a student, to refer again 6. bhe mueh used
iliustration of student heights, depends on)the thickness of
eartileges in the spinal column; shape of(the head; length of
thigh bones; posiure; and so omt and\s0)on. Each of these in-
fluences may be further brokethdownrdngosgnll influences. It
is mot diffieult to see that if ana,}yzmg the elemental influences
involved in the stature of a sttrdent is continued far enough the
conditions just laid down for a normal probability distribution
would seem fo be confo med to closely. In other words, it is
not surprising that the ‘equation of student heights is of the
form of a normal p}obabxhty curve,

There are a,namber of mathematical lines of reasoning
which lead to this’equation. The method here used is an exten-
sion of the bifemial expansion.

Smcé\plus and minus are equally likely, as are heads and
tails in\eoin tossmg, the probability of the oceurrence of a posi-
tive- wlue is 4. The chance that all elements are positive in
Cazey’ is (-})m, ,]IlSt as the chance that 3 heads result in three
throws is 1 in 8 or {3)°.

Let the numerical magnitude of an element be represeﬂted
by (delta ) Az. Then if all m are positive the resultant is
m . Az and the probability of this value, m . Ag, is (4)™ That is,

we here have a point with z=m . Az and y= ()™
Let m —1 elements be positive and 1 be negative. Then the

(135)
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resultant is [ (m — 1) Az — Ax] or (m—2) - Az while the prob-
ability is m (3)™ These coordinates are hence z = (m—1}Az
and y =m ()™

Let (m— 2) elements be positive and 2 be negative. Then
the resultant is [(m—2 - Az—2Ax)], or (m—2.2)Ax and the

m(m—1) m{m-—1)
probability i8 —————  hence y = ——— . ()™
1.2 1.2 Ko &
On extendiné the foregoing reasoning, we have the Qg'eijera;l
term, N
= (m—2nr) Az, K7, \
w & VY
m(m—1) (m—2...,.. (m—n4+ 1),
y = : »(2)

1.2.,38...... n x\\
The eoordinates of the next fo]lowing))aint are
¥ =(m—2n—_2) Az WV

g =g Ay bbrony, or g is 1 4 1) (m—n). ()™
1.2.3. ow. (nr D)

3

The ratio of the two y’gis,
£ “’Q’ m—4

Q\\“_y: ni1

Subtracting});é’j’gﬁ’ gides from 1, we have

AN\ 4 h—1

»\\ E A .

\J ¥ n-1.
On,n@ﬁhcing,
:,,\';‘:.’ y—y ntlo—mifn 2n—m 41

m\./ = =
\‘: y nd-1 w41
On subtracting x’s, we have,
&—x {(m—2) Ag— (m—2n—2) Ax

I

{(M—m-—8n4-2n 4 2)Ax
2. Az,

On substituting for  we have,

g=m.Ax—2nA2
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On solving we have,
m.Azs—2

m.As. %
Hence, ¢—m4l — —— — m 41
Ag
Mm., AL~ —MAZ | Az

Az .
Ad— N o
- 1 . ¢(\A
Aw :.\ ~
m. A& L W
an adl = ————— 1 N
d + 2., Ax + ‘ s
m.Axz—212 . AL O

2. Az
(m42) . a;\\.;x
2.fa%
y—y  Sgml
On substituting, in =
y N ontl
ww@ﬁaﬁlﬁfmﬁorg_in Az

"

we have
’ Ny Am (m+2)Ar—&
£ 2 (Ax— ) :

\i?’ = (m++%) Aw—=x
On further ¢embining and dividing by = — &, we have,
NDy—y  y.2az—az) 1
49 = =
PG z-—a (m42)Ae—z 2 Az

s
Th%’ihtest expression should be carefully noted even if the
re;a\dgi’ may not ecare to follow the intermediate expressions in
~detail. :

N Let us now assume that thers have been a large number of
the elements, and that these elements are sssumed to be smaller .
and smaller. In other words, let m become large and Az become
small. Now, in (A), Az is negligible in eomparison with = anfl
2 is negligible in comparison with m while m . Az is th.e maxi-
mum possible value which is very large in comparison with 2.

y—y —2x —ya

=y . — =

T SmAE mAp?

Hence (B)
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Expression (B} means that the difference in consecutive y’s
divided by the difference in the corresponding x’s is equal to
the negative product of x and y divided by the maximum
positive value of the z, times Az.

1
Let ug set down —— = 2% |
mAz?
Then {C) = 2k . yx A\
& — 6\

Now (C) is true regardless of how close are the jw points.
Henee let the points become closer and closer and, demgnate the
limit of y — % by dy and of £ —a' by dz. Then §e have

ay

— = — 2Wys N

s R
or, (D) dy 2h'a:d;z?” :

¥

It is an g}%e@ﬁp;mlgmgzg}% gf the calculus that expression
(D) is equivalent to
(BE) lo%y— —h“ -

where k ig constant andthe logarithm is to base e.
On passing from logarithms to number, we have,

y =@ e b h = v
or (F) ya=K .¢c-— since ¢ ¥ may be taken equal to the
constant J& {where ¥ is the expounent of ).
Welfially have in (F) the normal probability curve,
ANy = K . ¢ — I which is of the same form as,

e A

\‘;n N 1 x3
= e % ¢ where

o\Var

K= e and A®* = .
o/ 2x 24

The derivation of the forms

N 1
K= ——— and k* = — proceeds directly from the
o/ 2r ' o
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gssumption that the area under the curve must equal the total
frequency N, and that the standard deviation of the ordinates
ander the curve is equal to the standard deviation computed
from the observed points. The actual derivation which requires
a further knowledge of integral ealeculus may be found in Elder-
ton: “Frequency Curves and Correlation.” ¢

No attempt is made here to prove that the constant. is

2\,

actually equivalent to N/e . V= nor'that &
W= 3ot "

There are various ways of presenting these twé\i:«prdofs but
all of which are so detailed that it seems best todedve the actual
derivation to special references as those interésted may consult -
the various writings of Karl Pearson, or Meﬁiman ‘‘Methods of
Least Squares.”’ o\

Even though the demonstration given here might be some-
what lengthy the point is that the.dguation follows directly from
the basic statement of the n%&’wbabﬂﬁy curve. '

wwwedbrd

ulibrary.org.in



APPENDIX II

Introduction. The generalized frequency eurves of Pearson
are 80 diverge in shape that a curve of this class ean be found to
fit' any ordinary statistical distribution. By the following
methods the fitting of a Pearson curve is reduced almost entirely {\
to a matter of routine substitution in formulas, so that the prac-
tical statistician can make extended use of the curves witﬁduf
great familiarity with their theory. by

This discussion is designed both to present the w‘orkmg
methods of the generalized frequency curves and( to" give the
statistician who has a minimum of acquaintance with the higher
mathematics some degree of familiarity with)the underlying
theory. The demonstrations are, for the m t})art omitted,

In developing the thecry of the generahzed frequency curves
it is logieal as well as practically convenient, to start with the
normal eurve an ﬁdgr the general ‘distribution as ¢ modifica-
tion of the % WWW Hipé o lf}izs{egigu tion.

The Slope Property. ‘I‘he partlcn]ar modification which -
leads to the frequency eurvéq of Pearson is obtained by generaliz-
ing the slope conditi of the normal curve. The slope of a
curve at a given point is the tangent of the angle which the line
touching the curyé’at that point makes with the X-axis. In the
case of the normal curve, the ratio of the slope to the ordinate
is negatively“equal to the abseissa of the point, as is shown in the
derivations of Appendix 1.

Thisislope property is generalized by taking the ratio equal,

y ‘ J s+a
not/te —az but to — ——————— where @q, b, ¢, d, are con-
b+ ez + da

standts. The slope of a curve is ordinarily denoted by the gym-
Y
bol — and hence, we have the following equation

dz;
l%: z+ a .
¥ dx b+ exr + dzt

(140)
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The Constants, a, b, ¢, d. The statistical signiﬁ_cancé of
each of the constants, @, b, ¢, d, can be readily determined.
In Chapter IV, it is shown that the slope of a frequency

curve is zero at a mode. Since j—y: that is, the slope, is zerd
x A
when x = —a, the constant ¢ determines the position Qf\' t}ie\
mode, The mode is therefore at a distance, — g, from the mean.
As explained in Chapter V, ¢ is thus a measure of the'skewness,
of the lack of symmetry of the distribution. For & symmetrical
distribution a is evidently o. \/ R
When both ¢ and d are zero the generxakfze‘cf slope equation
& a

. . A\
is merely the normal slope equation with ¥ replaced by :
b.

This leads to the normal curve, .;.’j:'
x e ww dkriulibrary.org.in

y=*Fk.e ? ., where k is a constant.

Comparing this qu:{:t%n with the standard normal equation,

2

N — —
.

W7 vk

we see that hrequals 20 multiplied by 2 constant.

The égfée of symmetry of the curve is indicated by the
value 9{"6\35 well as by the value of a. For, when x is positive,
the térm cx is added in the denominator and when r is negative
Jt\”fs stbtracted. This tends to make the frequency curve steeper
toMhe left than to the right of the origin, and hence the curve
- must extend farther to the right, that is, the curve must be skew.

But it was seen in Chapter V, that B, is the fundamental
measures of skewness. Therefore both a and ¢ must contain

as a factor.

When #? is small the constant d has little effect on the
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slope, but for the extremities of the curve where x'and hence
d 2% is large the slope is reduced by a large vaiue of d. It will
_be seen that d depends largely on 8,.

The Types of Curves, We may now discuss the distinct
types of curves that possess the slope properties of the general-
ized slope equation. Distinct types of curves result according as
the denominator, b + cx - dx?, has two distinet factors, two cos

incident factors, or has no factors. O\
With two distinct factors the slope equation can be 3itten
vdy _ xte r4a N
y dx b+ cx + da? (r 4 #) (rzxxzr)

where k is a constant.

By the usual mathematical methods \y,e;\\l‘lien have
Ba—r) O —k(atn)

y=y (" +*) ———— o ,'.Qg'——x)T-l-l";_ (A)

where ¥ is the e constal of :ntegz;a;ilon

raulibrary.o
By a sxmple transformauon and rearrangement, this equa-
tion can be reduced to the form of Pearson’s first type, namely:

&) 2N™ r\™
y ='§<°\(£ -+ -a_) (I — ;—) ) Type L
N\ kS 1

o x
O Exercises.
A

1. %\”r’)‘t'through in detail the necessary transformations to de-
termine tJ\ €quation of Type 1 from equation (A).
2.3 Per{orm the integrations to obtain the curve of Type L
: t\’ $
\“When e, and q, are equal it is readily shown that m, — m,
and the equation takes the form of Type 1I:

xﬂ
Y=\ —';;) Type 11,
When one root of the denominator b - cx 4+ da? is indefi-

nitely large, that is, when d is zero, we have, from the theory
of the exponential e, the third type:

x{ Ay ye
=y (: +;—). Type 1IL
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This equation may be looked upon as that of Type I with a,
indefinitely large. _

The curves of Type III are especially serviceable because
the equations are simple in form and convenient for computa-
tion. They arc the most elementary skew curves.

By transforming expression (4), in a manner somewhat o
different from that to obtain Type I, the form of Pearsons

sixth type is readily obtaired, 1t is &
'\
Y=y, {F—a)Tax ™, IypéVI
O
Exercises. \
3. Obtain the equation of Type II by direct itdegration from the
. . . \J
differential equation. (N

4. Compare Type 11 with the normal cu{v{}x i
5. Obtain Type IIT directly by integratiohy’
6. Obtain Type I1I from (A). A
7. Compare the shape of Type Iilywith that of the normal cusve.
8 Obtain the equation @W{ﬁﬁ%h[ﬁ%tyoyg% the differential
cqualion. ,:':'. ‘
10. Is Type VI geometrigally distinct from Type I

2\ -
When two rootsg(‘e&fndcﬁnitely large we have the normal

Curve.
A Y=, € 2
. o
: . NY . "o H
which 1s g“{(led simply “Normal” in Pearson's scheme of
cation. \'
».\IW&k two coincident roots, the slop
Y 1 dy ; r+4a
¥ dr ) {(r+7)
' r

This leads to the form y = ¥,# "¢
which is Pearson’s type V.

classifi-

e equation becomes

Type V-

Exercises.

1{. Derive in detail the equation of Type V.
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Wtien the denominator of the slope equation cannot be
factored the integration is performed by writing

o1 ody x+a
y dy  btcxtdit’
[
T —_ \
+ 2d+ ¢ 2d
= + CS b cz o\“\
dglat +— — e e \
[ +d +4d2+d 4d"’] ‘
This gives A, \ R
' 23\ —ptan o (©
y:yo(l—!--;) ¢ V
[+4
) Iv.
which is the form of Type IV. (2 > Type
Exerclses

12. Derive in detail the equa.tfon ‘of Type IV.

13. @emmlﬂmmlﬁkﬁ‘we IV by transformatwn from the
" equation of Type L

14, Compare the form of the equation of Type IV to that of Type
\
If y is zero;gl\t’ne immediately preceding equation we have
Pearson’s Type
O Il W
CH ¥ =¥ ('{ + -
iz

O Type VIL
’\5

,\\Rhe Intercepts. The intercepts made on the X-axis by the
various types of curves can now be examined. The ordinate ¥
{I‘ype I is zero when x = — g, or &£ = @, hence it can be proven

\ “mathematically that there can be no real values of ¥ beyond
these two intercept points. That is, a Type I curve stops at the
points on the X-axis at distances — a, and a, from the mean,

In Type II the intercepts are of the gsame length and pumer-
ically equal to @, so that a Type II curve, like the curves of Type
I is a limited curve. Unkke the curves of the first type, Type
II eurves are symmetrical, that is, have zero skewness.

In Type I1I one intercept is — o and the other is indefinitely
large, thue these curves are limited to the left and indefinitely

IIL
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extended to the right. Tt should be taken as the type of a sorf of
basic skew curve. : :
In Types IV and VII there are no intercepts, because there.
are no values of x which reduce y to zero. '
In Type V one intercept passes through the origin and the
other is indefinitely large. : :
In Type VI both intereepts are positive or both are negative: N
Ordinarily the type of eurve selected skould have intereepts
harmonizing with the natural }imits of the range of the dafa
For instance, data necessarily limited in either direction, shouald
be smoothed with a curve correspondingly limited,. ‘However,
nearly all the curves are practically limited in range becanse the
ordinates soon become negligible, so that the matter is not one of . -
great importance; although a somewhat bej;te;:ﬁt is likely to be
obtained with a curve limited in accordanée‘with the data.

"

15. Of what type is the normal :;:j1rve a kmiting curve? _
16, Distinguish between a ‘GRrve " Win HUGHIEGE Mo intereapts: =
and a curve with imaginary o How-existent intercepts. :
17. Show that there araindefinitely more curves of Type L, VI and
IV than of Types III, V, IBor VII, or of the normsl eurve.
18. Show how Type.X can be said algebraically to include Type Iv.
18. Show that/Types I and VI are not fundamentally distinet.
20. Show fhat, by taking ali combinations of sign into aseount there -
are three distinét elasses of curve under Type L. o
21 Shgw\fhat thare are two sub-classes under Type II according as
the expm;‘s(t}n is pogitive or megative. _ :
223 \Show that there are two classes under Type TLL
23 Is there more than one general form of curve ander Type IVY
Ufjdgr Type V¥ ' '
) 24, Diseuss the eurves of Type VI
elagaes within the Type.
25. What types of these curves have asymptotea?
- 26. Do all the curves have a mode? .
27. TFind the point of inflexion fo reach type.

£

25 to the existence of sub- :

The Criterion K. Sinee the separation into types depend:
primarily on the nature of the roots of the quadratic, b +oz

dz®, the diseriminant of this quadratic (?ong_' ripap
the type of curve which fits the distribution. The values
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8, b, ¢ and d are first determined by the method of moments and
then the diseriminant expressed in terms of the computed ex-
pressions for b, ¢ and d.

The formula for X, the discriminant obtained in this way is
K = By (B, + 3)2 .
4(28, — 88, — 6) (48, — 38,) N\

- The Value of K and the Type of Curve. The,{ollowing
table gives the types of curves corresponding to the different

valnes of K. N
K < o i. e. negative LY Type L
Bi=o, B, =3 ¢ }\Normal Curve.
K =0,{8,=0, 8, <3 \ Type IL
1=0, B, >3 ,3\\' Type 11
K>0 <1 A Type IV.
K = 2N/ Fype V.
K > 1, but net indefinitely large, Type VI.
K indefinitely large Type III.

. .dbraulibrar .mf'g}in . .
1t is'to be noted that.the types of curve for any given statis-
tieal distribution ecan mow he determined by strictly arithmetie
methods,

AN
The only résfriction on the generality of the theory of the
eriterion K isthat the quantity ® (b + ez + de?) y must vanish
at both end® of the range. This condition marks the pairs of
values of, 87 and B, for which no curve of the generalized differ-
entialceguation can be found. The limiting values of B, and B,
aregfy > 16, and 8, > 8,/8-9/2.

.\'; " The Computation Formulas. The computation formulas
,“for the several types of Pearson’s frequency curves are derived

in accordance with the method of moments. For each type as
many moment equations are written ag there are constants in
the equation of a curve of the type. In some of the type equa-
tions, as in Type Y where a,/m, = a,/m,, the constants are con-
nected by equations so that the number of moment equations is
reduced. The moment equations are the result of equating the
theoretical moments of the curve obigined by integration to the
moments computed directly from the dato.
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H might be expeeted that the differential equation would be inte-
grated to give the equations directly, but the present process is more eon-
venient, The chief purpose, therefore, of the slope or differential equation
ig for the determination of the typs forms of the equations. After the
algebraic forms of the equations are determined each fype is worked out
without making use of its connection either with the slope equation or with
other type forma. Q)

The expression T {p), called the gamma funclion, obcirs
in the following formulas. This funetion is defined by the rela-
tion 4’:&,

I{p)=(p-—-1)T (p—1). D

If p is an integer, ' (p) = |p—1. \

If p is not an infeger, T (p) = {p—1) 2} ... (p—p+
2) T P where P is the remainder after¢subtracting a sufficient
rumber of 1’s to bring p down to between 2 and 1 in value. The
valzes of T' (P) are given in Table XXXI of *“Tables for Statis-
ticians and Biometricians,’’

The probable errors WE %lw&!bw wiopg.-imd 8, are given
n ““Tables.” .

The derivation of. ﬂle following computation formulas, ex-
cept the moment i mqmlas is not possible without an extensive
acquaintance with ée calenlus.

After the(Jeonstants in the equation are composed the
smoothed freguenmes are obtained by computing the areas under
the curve“end between the bounding ordinates. Thus the fre-
quency~of the first class is the area between the ordinate
z=%and z —1}. Simpson’s quadrature formula is ordinarily
~ufed for finding the class area. Acecording to this formula the

areais 1/6{y, 3 + s+ Yoy fWherey o —andy

e 43 are the bounding ordinates and y, is the mid-ordinate
of the class.
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Formulas for the Moments.
8’zdo

=68, —d (1+d)—d1+d) (2+d)
v,-—24S—2v,{2(1 +d)+ 1b—l6(1+4d) (24+4d) —1}

——d(1+d)(2+d)(3+d) QO
=Y "“1—12 .
By =y ,\"\{“>
E=vi— v, +£3 \ (T”}
e =Vp, O R
By = gy = pg® ) ~>&(,
B =g’ §‘*
- B:(8, +3)* ~

(45, —38,) (2)‘3,—3& &

™

www.dbraulibrary -Q«I'g&ﬁt

“\
™
Y
N\
O'\\
£ 3
t‘\' \v
O
Vo e 4
AN/
'\{\w)
{
"\
P
Q)
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The computation formulas for Type I are as follows:
The equation is, '

) M Xy M
Y="% [1+“] [——]
[ &,

where a,/m, = a,/m,.

O\

We have .:’st\.'

_ 6(B—p—1) O

= “——-—"—‘331 g, L6 _ '.j.f“}"

» ¢

TR FDFACTD O

pe o P27 D7 0N
[ 3 3 ,’

m, and m, are glven by the fo E}:ﬂ'lﬁ?lfhbl ary.orgin

#(r—2) = (r +2), Vﬁie

The constant #, is talr\“‘n with the negatwe root when p, is post-
tive and with the&safwe root when u, 15 negative.

a, -+ a, = b*
a, and gg/ gan be found from the relatmns a, —I—a, =} and
g8,/Mm; = a‘a(mz
\*:\: my T(m, 4-m,+2)
R (m F ) = F D, 4 DTOm, +1)
~O - _fr+=z
N/ The skewness is § V8; { — }
. 2%
Mode — mean--{;ﬁ{ ]
pp V¥ —2

The formulas for Type II are as follows. The equation
for this type is

2y
y-_“yo [I'-—- “—]

a?
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The formulas are

_ 5B—9

T 2(3—8,)

o — 2p,8,

3— 383

_ N I(2m+ 2) ’\
T a. 22+ UP(m + 1)1, ‘\:\

O
Type III. The equation is Y

/’ “

Y=y '(] >
— Y% 1 be .
32

The formulas are, \\\ ’

o\ 2=
www,dbrauljbrar‘x org.in
N
O 1
N N prt

N—

Y= — —
4 a e’T(p 4 1)
&

, where p = a.

I

g\ﬁ Mode = mean — -~
P 7
»\\wl I
“\\,) Skewness = —
\sl 07
A\ Type IV. The equation is .
\o/ P T S :
,"\'\\ }3=13, [I+—2] P tan al
:’,‘ . a
The formulas are:
_ 6(!32 - 31 _ I)
232 - 331 —6
m= 3(r 4 2),

_ art
16(r —1) fﬁl(r—z)”
v=4(r—2) Vg,

8=

2 Ve
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s 2 1

151

NJF ey T :
Yo="N¥— — . where tan ¢ = —.
8 27 (cos¢)rti r
.. v
Origin = mean 4-
,
B ¢ r—2 "
Mode = mean — ! mlr—2) O
L. 2 po(7-2) A

Type V. The equation is \\\

Y=Y P e \ QO
The formulas are: ..,:}“5

PR REAACR N ) \\&

B \
={r— 2} Vi (P — 3), with 51g11 sa\{\;’re as that of p,.
Ny ?~
Yo =
I‘(po-~ 1“5
wwwid?ﬂmtﬂry .org.in
\—v‘——"-“‘—
"‘ '“Q
,Qfigin — mean —
R p—2
\: “Mode == mean — - .
O p(p—2)

TQ:\%} The equation is
AN y =y, (s —a)@ s —d.

‘

{\ ’fhe formulas are:

Q~ o 6B
6+ 36, — 28;
v 4r2 s
T a6(r 4 1) + Blr +2)°
1—q =—=% +2\/5’_'3-v
2 4

r-+2
[.-!—qs:——z"' 4 '\7—‘:81:
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ra
&= —T
Ve
Ng@—=a—1T1(q,)
Yo = .
{g,—g,— 1)T(g, 4+ 1)
—1
Origin = mean — ?(i___._)_ \‘/\\

Gy — 2 ¢
Ho 1’—’—'2 Q N

T
Mode = mean — ——2"- . - h
2 gy r — 2 4 “‘\

Normal Curve. The equation, as w@r ved in Chapter

2}:

VI, is

l:r'\/ 24 é}"/
and the eurve wag ldggpﬁgq% gk?@ﬁf chapter,

\\«



APPENDIX III
MAKEHAM’S LAW OF MORTALITY

Makeham’s Law of Mortality. Anp application of the idea
of rates under Makeham’s Law of Mortality is of interest as an
illustration of the general idea of the geometric mean. It is alse
of interest as showing how comparatively simple ideas may-be™
developed into a powerful mathematieal formula. This formula
states a trend in precise mathematieal language. AN\

The forces which bring about death may be looked upon as-
belonging to two classes. Omne class may be ealled. the)accident
class, made up of purely accidental forces which Affect the young:
and old alike. The totality of all such forees ean then be repre- -
sented by a constant, A, let us say. N

The seeond class of forces may be thought of as the totality
of the wear and tear, as the result £ the degenerative digeases.
These latter forces have been i]lug&ated by the action of an air
pump where each stroke remoglranlfisedypergantage of the air.
Under these progressive decreades in the foree of life each year
takes away a fixed pereentage of the ability to withstand death.

Under this fixed rdtio of decline idea, let us denote the con-
stant ratio by the gﬁr’, c. Then the cumulative foree according
to age will be théwresult of applying this ratio once for each year,
that is, €=, T\hisr Natter expression, ¢, is only the cumulative -
Tatio and }ﬁﬁme should be multiplied by a constant which we
may denoté’by B. ' '

Iﬁ;’mging all these expreessions together we have A + Bc* as
thedoree of mortality. ' o N

() "At this point it is necessary to bring in the usnal expression
S_for the foree of mortality without reference to the law of mortsl-
ity. The symbol g, is found in actuarial literature for the force
of mortality. If the symbol J denotes the pumber living at
age « then the number dying may be denoted by al,. Assume
these deaths take place in A¢ years, then the pumber dying In

Al )
one year would be —. If 100 deaths oceur I 0D& month there
(163)
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would be 100/ or 1200 deaths in one year. These yearly
deaths must be expressed as a pereentage of the number living

LAl .
to get an average death rate; this gives — — u—t . The negative

£ *

gign is used because all the decrements in I, are negative.

N\
1 al,
In the expression Y let us think of the interval of
" A ) \..‘
. '\
time as becoming smaller and smaller when, in the langiiage of
, , L d’D
the caleulus, this expression becomes — — —-& That is, we
1 dl, I, oG
“have, py = — —  —, RN
L, dt D
To return to the derived constmi‘form for the foree of
mortality we have, L™
www.dbraulibrary oggin
P = — — - — = 4} Bex.
I, dt

From here on it ig“necessary to have an elementary knowl-
edge of the calculué\\'i‘hose who are not familiar with the solu.
tion of differentialequations can accept the statement that the

~ foregoing equation leads to:

c*
+ log. k,
log.c

Where A, B and ¢ are our previously defined constants and
_logu¥e is a constant of integration.
\ ) Letusset—A=1log, s « and B/log. c=1og. g
Then log, I, = log. b+ = log, s+ ¢= leg, g

oo, 1. = — 4o

or I, = ks* gex
whieh is Makeham’s equation of mortality.
It should be noted the Makeham’s equation is true to the

extent that omr basic assumptions as to the elassifications of the
forces producing death are trae,
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Abgeissas, axis of, 16
Accidental errors, 31, 33
Algebraic law, &4

. Arveas, preservation of, 21
Arithmetie mean,
eomputation,
definition, 34
relinbility of, §9
significance of, 37
standard deviation of, 58
Array, definition, 77
Asymmetrieal distribution, 61
Attributes, definition of, 77
Averages, consistency of, 47 )

85

" Averzges and agymmetry, 61
Axes, coordinate, 16 :'\\;
Bias, 81

%

Bracket rsnk method for ties, 100 A
wg.gwyc[braulibl'ary.ot'g.in

Center of correlation table, 80
Characteristics, definition of, .77
Coeficient of correlation, |
computation of, 91&: )
limiting values,
probable devigtign of, 95
statistical pEeperties of, 92
Coefficient of variability, 56
Contingenqy{'m\ethod of, 133
Coordina.‘ﬁ{s,/ 18
Coozdifate lines,
Coreglation, 80
~Corzelation evefficient, 90
Correlation index, 115
Correlation ecefficient of ranks, 97
Correlation ratio, 83, 80
computation of, 84
definition of, &1
probable deviation of, 86
significance of, 85
and coefficiency, relation between,

(155)

13

119



156 INDEX

Correlation table, 78
Cumulative curves, 16
Curve, definition of, 14

Deciles, 43
a8 meaqures of dispersion, 60
Dependency, degree of, 33
Deviations, 14
from the mean, 37
mean squared, 51
Disgram, arrangement of, 15
Differences, significance of, 124, 127
varianes of, 124
Dispersion, 48

Equation of o frequency curve, 64
Errors, classes of, 33 ¢*0
in random sampling, 31 ,“,\
Fow classes, correlstion from a, 128 Y
Flatness of swemwe] bivddlibrary rg.in
Frequency, definition of, 26 O
Frequency curve, equation ofy) 84
smoothing of, 29
uss of, 29 '\
Frequency distributidn)”definition of, 27
plotting, 28
FPrequency um:fa‘:xen,a‘ 80
A\ S/
Geometrigimean, 39
significance of, 40
Goo@is of Pit, 70
w " least square test, 112
/~Braduation, tost of, 22
& )
) \ Homocligy, definition, 121
Homogeneoua data, definition, 32
Homoscedaaticity, definition, 121

Index of eorrelation, 115
formula, 118

Interpolation, definifion of, 18
the problem of, 19

Intervalg in seales, 13
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Kurtosis, definition, 110

Least squares, 73

mathod of fitting a eurve, 114
Linearity of regression, test for, 94
Logarithmie eurves, 16

Makeham’s law of mortality, 24, 41 A
derivation of equation for, 153 ) \
Mean cubed deviation, 73 N
Mean, definition, 34 N
Mean deviation, 48 79 .\
statistical significance, &1 o\
Mean of an array, 82 \/
Mean rank, formula for, 96 - N
Mean squared deviation, &1 AN
ghort raule, 52 "g\“ )
shout the mean, 55 . N v
Means, symbols of, T8 . A
Median, definition, 42 N o
statistical properties, drwy.{;tlbraullbral'y,org,m-
Mid-rank method for ties, 1003° -

Mistakes, 33 Q
Mods, 45 {"\

statistical signiﬁ{s\'mm, 46 -
Moments, A\

correction ﬁoirm’ulas, 108
definition\ 108
and egiation of curve, 113

tHod ef smoothing, 111
~E§éformation formulas, 103
Ry N and B forms, 110
_ Moying averages, 38
\'\3 »  Multiple eorrelation, 115
Multinodal data, 45

Non-linear regression correlation, 180
Narmal enrve, areas under, 63, 68, 70
derivation of equation, 135
equation of, 65
ordinates of, 68
significance, 64, 65
Normel distribution, probable deviation, 72
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Normal equation, curve of, 66

statistieal significance, 139

Normality, inapection of, 72

Observed values, 14
Ordinates, axis of, 16

Partia! correlation, 116

Pearson curves, computation formulas,

criteria for, 145
frequency curves, 140
intercepts of, 144
types of, 142, 144

Periodic data, 23
Plotting data, 11
Polygon, frequency, 29
Population, 31
Probable deviation, 44

Probable valdg¥6¥- Q%&&'Aﬁf&ﬁﬁ@"ﬁmst
Proportions, difference between., 1‘25

formula, 58
and quartiles,

Quartiles, definition, 4&\

measures of dl@ ion, 57

Random samplmg, deﬁmhon 31

theory,¢ 3\2

Rank coeﬂi'\ont aceuraey of, 102

Ran

s\.}ard deviation of, 101

3 Probable deviation of, 102

’\s.

A\

¢Rank, in 5 series, 96

standard deviation from, 96
ties in, 99

Regressmn eurve, 82

correlation significanco, 82

Regression equations, %9

from moments, 117

Regression, line, 88

linear, 88
troly linear, 88

Representativa data, 320

INDEX

148

120

1\‘00 refation coefficient, correction formuln for,

101
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Sampling, random, 31
definition, 31
Sense of an array, 77
Sensibly linear regression, 88
Qine eurve, 23
Skewness, definition, 62
meagures of, 62, 63
Slope property, Pearson curves, 140
Smoothed curve, 19 o
Smoothing, by inspeetion, 20 2N
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